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Abstract: The goal of this retrospective study was to document any alterations in plasma amino
acids (AAs) in subjects with cardiorenal syndrome type 2 (CRS 2). We analyzed data from sixteen
patients with CRS 2 and eight healthy subjects (control group, C), whose plasma arterial (A) and
venous (V) AA concentrations had been measured. Compared to C, the group of CRS 2 patients
showed significant reductions by more than 90% in A (p < 0.01) and V (p < 0.01) individual AAs,
whereas negative A-V differences that indicated a net muscle AA release (muscle hypercatabolism)
were found in 59% of CRS 2 patients (p < 0.03). No significant differences in plasma A and V AA
concentrations nor in A-V differences were found between patients with mild kidney damage (N = 5;
estimated glomerular filtration rate, eGFR ≥ 60 mL/min/1.73 m2) and patients with moderate-severe
kidney damage (N = 11; eGFR < 60 mL/min/1.73 m2). Several plasma arterial AAs correlated with
hemodynamic variables, but not with GFR. The study showed that patients with CRS 2 had very low
concentrations of circulating AAs, independent of the degree of GFR damage.

Keywords: cardiorenal syndrome; plasma amino acids; multiorgan impact; practical implications

1. Introduction

The complication of chronic heart failure (CHF) with chronic kidney disease (CKD)
identifies the cardiorenal syndrome (CRS) which is classified as CRS type 2 (CRS 2) [1,2].
The prevalence of CRS 2 is estimated to be 25–63% [3–5]. The development of CKD in
the CHF setting amplifies the clinical difficulties in managing volume overload, using
mechanical circulatory support in a cardiac transplantation [6]. Anemia, cachexia and
physical deconditioning, which are three independent risk factors of survival and functional
prognosis in CHF [7–9], might be aggravated. The development of renal failure reduces
survival, even in patients with preserved left ventricular ejection fraction (LVEF) [3].

We hypothesized that the development of renal dysfunction in patients with CHF may
amplify the alterations of amino acid (AA)/protein metabolism, as reflected by plasma
AA concentrations, already documented in CHF alone [10] and in primary CKD alone [11].
Firstly, CHF and CKD share similar pathogenic mechanisms, influencing the turnover of
body/muscle nitrogen metabolism. These mechanisms include hemodynamic factors such
as right ventricular overload [1,12], neurohormonal activation with sympathetic overdrive,
activation of renin-angiotensin-aldosterone system (RAAS), inflammation, hormonal al-
terations and immune dysregulation [1,13]. Secondly, the kidney plays a major role on
body AA homeostasis [14,15]. Thirdly, in CRS 2, both glomerular [16] and tubular [2,17–19]
damages are described.
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The presence of an abnormal plasma amino acid (PAA) profile in patients with CRS 2
may be clinically important given that it has the potential to impair the metabolic activities
of all body districts, including the heart and the kidney themselves, thus acting as additive
damage. Moreover, abnormal PAAs may lead the physician to two therapeutic dilemmas:
(a) when patients are stable, how could their dietary protein intake be reduced in relation
to glomerular filtration rate (GFR) damage [20] and, at the same time, how could it be
increased in order to correct abnormal PAAs and provide patients with an adequate amount
of nitrogen for their body’s metabolic requirements? (b) During an acute event, would
normal or artificial nutrition be adequate to support the body’s increased nitrogen needs?

Using the data from a previous study where we had analyzed arterial and venous
PAA profile in CHF patients [10], we performed a secondary analysis on the collected data.
The aim of the analysis was to investigate whether GFR damage could be associated with
abnormal PAA concentrations, even though we were aware that proximal tubules are the
main structure deputed to AA reabsorption from filtered plasma.

2. Materials and Methods

We re-analyzed the data from chronic heart failure (CHF) patients who had partici-
pated in a previous study on Plasma Amino Acid Abnormalities [10]. These patients were
admitted to the Heart Failure Unit of the Scientific Institute of Montescano to undergo
right cardiac catheterization for heart transplantation evaluation. We only selected CRS 2
patients whose arterial and venous AAs had been measured after overnight fasting.

The diagnosis of CRS 2 was established following the indication of the American Heart
Association Statement [1]. In addition to PAA measurements, the inclusion criteria were
the following: clinical stability (no changes in drugs over the previous three weeks, and no
clinical evidence of body water retention), stable normal body weight (body mass index,
BMI, > 22 kg/m2) for the previous three months, absence of hypoglycemic agents, normal
liver function (total bilirubin < 1.1 mg/dL; serum alanine aminotransferase < 39 U/L;
serum oxaloacetic aminotransferase < 25 U/L), absence of kidney dysfunction preceding
the diagnosis of CHF, absence of primary endocrine disturbances.

Following the routine protocol of the Institute, 2D-echocardiography and cardiopul-
monary exercise testing was performed on CHF patients, and their venous N-terminal
pro-B-type natriuretic peptide (NT-pro-BNP) concentrations were measured.

In the selected patients, CKD was diagnosed after transforming serum creatinine
concentrations into GFR (estimated GFR, eGFR) (mL/min/1.73 m2) [21]. The eGFR values
were then categorized according to the classification of Kidney Disease: Improving Global
Outcomes (KDIGO) [22]. According to KDIGO, we identified 16 patients with CRS 2: 11
(68.8%) had eGFR < 60 mL/min/1.73 m2 (moderate-severe CKD: MS-CKD) (range 59–26)
and 5 (31.2%) had eGFR ≥ 60 mL/min/1.73 m2 (range 60–88) (mild reduction: M-CKD).
The patient characteristics have been reported in Table 1.

In the patients, the PAAs had been determined as described elsewhere [23], and
expressed in µmol/L.

We used arterial (A) and venous (V) concentrations to calculate the AA (A-V) differ-
ences. A positive value indicated net muscle AA uptake (prevalence of anabolic activity);
a negative value indicated a net muscle AA release (prevalence of catabolic activity); no
positive–no negative (A-V) value indicated no AA net uptake, no net release (balanced
muscle AA metabolism).

PAA concentrations were determined in a group of healthy subjects (controls: C; N = 8,
6 of whom males). The controls were selected for similar BMI (27.1 ± 2.2 kg/m2) and
age (51 ± 9 years) and for absence of discretionary physical activity. The healthy subjects
reported no significant past medical history. Examination of the control subjects confirmed
that they were in good health. In healthy C, in the current study, we also considered the
AA ornithine, which had not been considered in the previous study [10], as this AA is a
by-product of the urea cycle; however, we did not consider the AA taurine [10] because it
was not available in CRS 2 patients’ venous blood samples.
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Table 1. Demographic, anthropometric and clinical characteristics, functional class, etiology, biohu-
moral variables, cardiac hemodynamic variables and renal function tests of the studied cardiorenal
syndrome type 2 (CRS 2) patients.

Variables All-CRS 2 (N = 16)

Demographics
Age (years) 56.5 ± 8.5

Sex (male/female) 11/5

Anthropometrics
Body weight (kg) 76.0 ± 15.2

BMI (kg/m2) 26.3 ± 3.9

Blood
Glucose (mg/dL; NV = 80–110) 96.3 ± 14.1

Albumin (g/dL; NV = 3.5–5) 4.3 ± 0.4
Hemoglobin (g/dL; NV = 12–15) 13.0 ± 2.2
Sodium (mEq/L; NV = 135–145) 136.4 ± 3.5

Potassium (mEq/L; NV = 3.5–5.0) 4.1 ± 0.6
NT-pro-BNP 2940.9 ± 1865.4

(pg/mL; NV < 125 for age < 75 years)

Clinical characteristics
Medication
β blockers 16 pts (100%)
Diuretics 16 pts (100%)

ACE inhibition 14 pts (87.5%)
Digoxin 7 pts (43.7%)

Functional class
NYHA 3.2 ± 0.5

Etiology
Ischemic 10 pts (62.5%)

Idiopathic dilated cardiomyopathy 4 pts (25%)
Valvular 2 pts (12.5%)

Arterial blood pressure
Systolic blood pressure (mm Hg) 108.4 ± 12.3
Diastolic blood pressure (mm Hg) 65.5 ± 11.4

Hemodynamic variables
CI (L/min/m2) 2.1 ± 0.4
SV (mL/beat) 61.5 ± 13.7

SVI (mL/beat/m2) 32.8 ± 7.5
LVEF (%; NV > 55) 29.3 ± 12.0

Physical performance
VO2 rest (mL O2/kg/min) 3.5 ± 0.8

VO2 peak (mL O2/kg/min) 11.8 ± 2.9
RER peak 1.10 ± 0.03

Renal function tests
Creatinine (mg/dL; NV = 0.6–1.2) 1.42 ± 0.18

eGFR (mL/min/1.73 m2) 54.9 ± 19.3
Urea (mg/dL; NV = 20–40) 68.2 ± 46.2

Data are given as mean ± SD, except for gender. Abbreviations: CRS 2, cardiorenal syndrome type 2; BMI,
body mass index; NT-pro-BNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart Association;
CI, cardiac index; SV, stroke volume; SVI, stroke volume index; LVEF, left ventricular ejection fraction; NV, normal
value; VO2, oxygen consumption; RER, respiratory exchange ratio; eGFR, estimated glomerular filtration rate.
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Statistical Analysis

The central tendency and dispersion of continuous variables were reported as mean ±
SD. Due to violations to the normality assumption (Shapiro–Wilk statistic), hypothesis test-
ing was based on non-parametric statistics. Descriptive statistics for categorical variables
were reported as N (percent frequency). Between-group comparisons were carried out
by the Mann–Whitney U-test (two groups), or by the Kruskal–Wallis test (three groups)
and by the Chi-square test for continuous and categorical variables, respectively. When
the Kruskal–Wallis test was significant, post hoc analysis was carried out (Dunn–Sidak
adjustment). The association between couples of variables was assessed by the Spearman’s
correlation coefficient.

A p-value < 0.05 was considered statistically significant. All analyses were carried out
using the SAS/STAT statistical package, release 9.4 (SAS Institute Inc., Cary, NC, USA).

3. Results
3.1. Comparison between Healthy Controls and the Entire Population with CRS 2

The study found significant differences in PAAs between the entire population with
CRS 2 and C. In CRS 2, more than 90% of both arterial (Table 2) and venous (Table 3)
individual AAs, and 71.4% of (A-V) differences (Table 4) were lower than in C. In CRS
2, total arterial and venous AAs (TAAs) were lower: −73% and −56.4%, respectively.
In contrast, the muscle release of TAAs was higher (+453%, p = 0.027) in CRS 2 than in C.
Moreover, in CRS 2, significantly lower arterial and venous essential amino acid (EAA)
and branched chain amino acid (BCAA) concentrations were found (p = 0.0001 for all AAs),
whereas their muscle releases (Table 4) were higher than in C. Compared to C, CRS 2 had
arterial/venous AA ratios < 1 (Table 5).

Table 2. Plasma arterial AA concentrations (µmol/L) in controls (C) and cardiorenal syndrome type 2
(CRS 2) patients.

Variable C (N = 8) CRS 2 (N = 16) p-Value

Aspartic acid 112.1 ± 8.858 29.83 ± 14.23 <0.0001
Glutamic acid 198.63 ± 10.61 84.97 ± 26.72 <0.0001

Asparagine 61.04 ± 1.99 23.60 ± 11.17 <0.0001
Serine 88.39 ± 4.25 23.17 ± 8.01 <0.0001

Glutamine 464.88 ± 13.98 100.64 ± 43.78 <0.0001
Histidine 58.00 ± 5.15 23.02 ± 33.44 0.014
Glycine 268.25 ± 11.97 49.08 ± 16.79 <0.0001

Threonine 111.6 ± 7.3 20.62 ± 10.00 <0.0001
Citrulline 24.57 ± 3.66 6.42 ± 1.73 <0.0001
Alanine 312.63 ± 15.67 72.28 ± 20.20 <0.0001
Arginine 59.27 ± 7.61 27.23 ± 11.36 0.00019
Tyrosine 56.25 ± 6.11 16.12 ± 3.90 <0.0001
Cysteine 77.13 ± 5.14 15.47 ± 6.37 <0.0001

Valine 160.0 ± 15.8 49.84 ± 12.79 <0.0001
Methionine 9.7 ± 2.8 3.22 ± 1.49 <0.0001
Tryptophan 50.1 ± 4.9 15.64 ± 7.93 <0.0001

Phenylalanine 51.3 ± 5.1 11.61 ± 3.17 <0.0001
Isoleucine 47.4 ± 4.1 10.61 ± 3.35 <0.0001
Leucine 79.1 ± 8.5 21.03 ± 6.93 <0.0001
Lysine 107 ± 11.4 37.65 ± 12.95 <0.0001

Ornithine 56.38 ± 6.39 63.88 ± 20.73 0.36
TAAs 2453.78 ± 49.54 626.56 ± 176.22 <0.0001

BCAAs 286.5 ± 13.57 81.47 ± 22.41 <0.0001
EAAs 612.2 ± 20.3 170.21 ± 48.64 <0.0001

Data are given as mean ± SD. Reported p-values are from Mann–Whitney U-test. AA, amino acid; C, controls;
CRS 2, cardiorenal syndrome type 2; TAAs, total amino acids; BCAAs, branched chain amino acids; EAAs,
essential amino acids.
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Table 3. Plasma venous AA concentrations (µmol/L) in controls (C) and cardiorenal syndrome type 2
(CRS 2) patients.

Variable C (N = 8) CRS 2 (N = 16) p-Value

Aspartic acid 111.83 ± 10.48 43.48 ± 15.53 <0.0001
Glutamic acid 206.13 ± 11.15 154.01 ± 52.32 0.004

Asparagine 112.65 ± 157.39 41.27 ± 10.38 0.001
Serine 90.83 ± 4.21 42.10 ± 14.69 <0.0001

Glutamine 467.25 ± 11.67 128.17 ± 31.67 <0.0001
Histidine 58.38 ± 6.02 37.92 ± 27.40 0.043
Glycine 258.38 ± 27.54 90.67 ± 38.11 <0.0001

Threonine 106.63 ± 11.10 28.83 ± 8.42 <0.0001
Citrulline 25.07 ± 2.90 9.77 ± 3.26 <0.0001
Alanine 327.63 ± 15.60 125.82 ± 37.67 <0.0001
Arginine 59.44 ± 5.85 36.21 ± 16.75 0.001
Tyrosine 51.75 ± 5.70 36.04 ± 12.97 0.003
Cysteine 79.38 ± 7.76 26.00 ± 27.58 0.0006

Valine 153.88 ± 13.48 79.44 ± 26.50 <0.0001
Methionine 10.75 ± 1.75 6.61 ± 3.47 0.003
Tryptophan 51.13 ± 4.64 35.09 ± 15.89 0.003

Phenylalanine 46.25 ± 5.68 22.99 ± 7.37 <0.0001
Isoleucine 45.75 ± 5.01 19.27 ± 5.27 <0.0001
Leucine 78.13 ± 6.36 43.50 ± 12.10 <0.0001
Lysine 115.75 ± 11.03 59.02 ± 17.97 <0.0001

Ornithine 55.38 ± 6.72 98.37 ± 30.20 0.0009
TAAs 2377.56 ± 151.78 1040.19 ± 210.78 <0.0001

BCAAs 277.75 ± 12.96 142.21 ± 42.71 <0.0001
EAAs 608.25 ± 19.95 294.75 ± 71.74 <0.0001

Data are given as mean ± SD. Reported p-values are from Mann–Whitney U-test. AA, amino acid; C, controls;
CRS 2, cardiorenal syndrome type 2; TAAs, total amino acids; BCAAs, branched chain amino acids; EAAs,
essential amino acids.

Table 4. (A-V) AA differences (µmol/L) in controls (C) and cardiorenal syndrome type 2
(CRS 2) patients.

Variable (A-V) C (N = 8) (A-V) CRS 2 (N = 16) p-Value

Aspartic acid 0.27 ± 14.35 −13.65 ± 20.73 0.10
Glutamic acid −7.50 ± 21.05 −69.04 ± 70.60 0.027

Asparagine −51.61 ± 157.21 −17.67 ± 16.03 0.023
Serine −2.44 ± 6.45 −18.93 ± 18.59 0.032

Glutamine −2.38 ± 23.05 −27.53 ± 54.47 0.08
Histidine −0.38 ± 5.04 −14.90 ± 48.43 0.023
Glycine 9.88 ± 29.98 −41.60 ± 32.73 0.001

Threonine 4.97 ± 14.84 −8.21 ± 10.40 0.11
Citrulline −0.50 ± 5.65 −3.35 ± 2.67 0.14
Alanine −15.00 ± 20.54 −53.53 ± 38.40 0.012
Arginine −0.16 ± 10.21 −8.98 ± 14.61 0.14
Tyrosine 4.50 ± 9.10 −19.92 ± 13.23 0.0006
Cysteine −2.25 ± 8.10 −10.53 ± 27.13 0.95

Valine 6.12 ± 19.39 −29.60 ± 25.15 0.017
Methionine −1.05 ± 1.93 −3.39 ± 4.45 0.037
Tryptophan −1.03 ± 7.65 −19.45 ± 18.86 0.008

Phenylalanine 5.05 ± 6.56 −11.38 ± 7.94 0.006
Isoleucine 1.65 ± 5.72 −8.66 ± 5.96 0.023
Leucine 0.97 ± 7.25 −22.47 ± 14.06 0.002
Lysine −8.75 ± 16.73 −21.37 ± 21.05 0.020

Ornithine 1.00 ± 10.49 −34.50 ± 32.73 0.004
TAAs 76.22 ± 138.9 −413.63 ± 333.21 0.020

BCAAs 8.75 ± 23.87 −60.74 ± 43.95 0.006
EAAs 7.95 ± 24.07 −124.54 ± 92.02 0.004

Data are given as mean ± SD. Reported p-values are from Mann–Whitney U-test. AA, amino acid; A, arterial AA
concentration; V, venous AA concentration; C, controls; TAAs, total amino acids; BCAAs, branched chain amino
acids; EAAs, essential amino acids.
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Table 5. Plasma arterial/venous ratios (%) in controls (C) and cardiorenal syndrome type 2
(CRS 2) patients.

Variable Ratio C (N = 8) Ratio CRS 2 (N = 16) p-Value

Aspartic acid 1.00 ± 0.13 0.77 ± 0.48 0.09
Glutamic acid 0.97 ± 0.10 0.87 ± 1.22 0.027

Asparagine 0.96 ± 0.35 0.62 ± 0.33 0.032
Serine 0.98 ± 0.07 0.63 ± 0.33 0.017

Glutamine 1.00 ± 0.05 0.84 ± 0.44 0.10
Histidine 1.00 ± 0.09 0.61 ± 0.11 0.014
Glycine 1.05 ± 0.13 0.97 ± 1.71 0.0006

Threonine 1.05 ± 0.14 0.75 ± 0.37 0.014
Citrulline 1.00 ± 0.24 0.70 ± 0.21 0.010
Alanine 0.96 ± 0.06 0.61 ± 0.23 0.003
Arginine 1.01 ± 0.17 0.83 ± 0.34 0.09
Tyrosine 1.10 ± 0.17 0.53 ± 0.33 0.002
Cysteine 0.98 ± 0.11 0.93 ± 0.45 0.54

Valine 1.04 ± 0.12 0.68 ± 0.26 0.008
Methionine 0.90 ± 0.17 0.78 ± 0.90 0.017
Tryptophan 0.98 ± 0.15 0.56 ± 0.47 0.020

Phenylalanine 1.11 ± 0.15 0.56 ± 0.28 0.002
Isoleucine 1.04 ± 0.13 0.59 ± 0.26 0.002
Leucine 1.01 ± 0.09 0.53 ± 0.28 0.002
Lysine 0.92 ± 0.14 0.68 ± 0.28 0.007

Ornithine 1.03 ± 0.19 0.70 ± 0.27 0.007
TAAs 1.03 ± 0.06 0.65 ± 0.29 0.008

BCAAs 1.03 ± 0.09 0.62 ± 0.26 0.003
EAAs 1.00 ± 0.04 0.62 ± 0.28 0.003

Data are given as mean ± SD. Reported p-values are from Mann–Whitney U-test. C, controls; CRS 2, cardiorenal
syndrome type 2; TAAs, total amino acids; BCAAs, branched chain amino acids; EAAs, essential amino acids.

To sum up, the study found that in comparison to controls, patients with CRS 2 had low
PAAs even though their skeletal muscle tissue released a larger amount of these substrates.

3.2. Comparisons between C, M-CKD, MS-CKD

Compared to C, M-CKD patients (eGFR ≥ 60 mL/min/1.73 m2) had lower concen-
trations of arterial (Table 6) and venous (Table 7) TAAs, EAAs, BCAAs and all the single
AAs, with the exception of venous threonine, which was similar in C and M-CKD. Skeletal
muscle tissue in M-CKD (Table 8) released larger amounts of leucine, BCAAs and EAAs.

Compared to C, MS-CKD (eGFR < 60 mL/min/1.73 m2) patients had lower arterial
(Table 6) and venous (Table 7) concentrations of all individual AAs, except for venous
ornithine, which was higher. With respect to muscle AA (A-V) differences (Table 8), MS-
CKD released larger amounts of leucine, EAAs, BCAAs, glycine, tyrosine, tryptophan and
phenylalanine.

M-CKD and MS-CKD patients had similar concentrations of arterial and venous AAs
as well as muscle AA releases.
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Table 6. Plasma arterial AA concentrations (µmol/L) in controls (C) and cardiorenal syndrome type 2 (CRS 2) patients after stratification for eGFR ≥ 60 mL/min/1.73 m2

(mild CKD: M-CKD) and eGFR < 60 mL/min/1.73 m2 (moderate-severe CKD: MS-CKD).

Variable C (N = 8)
M-CKD

eGFR ≥ 60 mL/min/1.73 m2

(N = 5)

MS-CKD
eGFR < 60 mL/min/1.73 m2

(N = 11)
p-Value p-Value C vs.

M-CKD
p-Value C vs.

MS-CKD
p-Value M-CKD

vs. MS-CKD

Aspartic acid 112.1 ± 8.858 30.49 ± 19.76 29.53 ± 12.13 0.00046 0.009 0.0007 1.00
Glutamic acid 198.63 ± 10.61 80.48 ± 29.08 87.01 ± 26.80 0.00045 0.005 0.001 0.99

Asparagine 61.04 ± 1.99 20.21 ± 9.20 25.13 ± 12.04 0.00040 0.003 0.002 0.94
Serine 88.39 ± 4.25 21.80 ± 8.97 23.79 ± 7.92 0.00046 0.007 0.0009 1.00

Glutamine 464.88 ± 13.98 100.16 ± 33.41 100.86 ± 49.28 0.00045 0.013 0.0006 1.00
Histidine 58.00 ± 5.15 21.52 ± 32.02 23.71 ± 35.57 0.050 0.18 0.066 1.00
Glycine 268.25 ± 11.97 47.53 ± 18.66 49.78 ± 16.79 0.00046 0.009 0.0007 1.00

Threonine 111.6 ± 7.3 21.63 ± 8.88 20.16 ± 10.85 0.00045 0.015 0.0005 0.99
Citrulline 24.57 ± 3.66 5.98 ± 2.48 6.62 ± 1.37 0.00044 0.004 0.001 0.98
Alanine 312.63 ± 15.67 67.30 ± 7.58 74.55 ± 23.89 0.00046 0.007 0.0009 1.00
Arginine 59.27 ± 7.61 28.52 ± 17.02 26.64 ± 8.75 0.0009 0.011 0.002 1.00
Tyrosine 56.25 ± 6.11 14.81 ± 3.74 16.72 ± 3.99 0.00035 0.002 0.002 0.85
Cysteine 77.13 ± 5.14 12.73 ± 6.32 16.72 ± 6.27 0.00037 0.002 0.002 0.89

Valine 160.0 ± 15.8 47.73 ± 12.95 50.80 ± 13.24 0.00044 0.005 0.001 0.99
Methionine 9.7 ± 2.8 3.12 ± 1.27 3.26 ± 1.64 0.00043 0.004 0.001 0.98
Tryptophan 50.1 ± 4.9 17.44 ± 11.53 14.82 ± 6.22 0.00046 0.008 0.0008 1.00

Phenylalanine 51.3 ± 5.1 9.99 ± 2.41 12.35 ± 3.30 0.00033 0.001 0.002 0.81
Isoleucine 47.4 ± 4.1 10.41 ± 2.53 10.70 ± 3.78 0.00045 0.006 0.001 1.00
Leucine 79.1 ± 8.5 19.98 ± 6.28 21.50 ± 7.45 0.00043 0.004 0.001 0.98
Lysine 107 ± 11.4 32.37 ± 7.34 40.05 ± 14.48 0.00037 0.002 0.002 0.89

Ornithine 56.38 ± 6.39 60.34 ± 28.54 65.48 ± 17.59 0.43 - - -
TAAs 2453.78 ± 49.54 601.46 ± 166.72 637.97 ± 187.10 0.00046 0.007 0.0009 1.00

BCAAs 286.5 ± 13.57 78.12 ± 20.75 83.00 ± 23.94 0.00045 0.005 0.001 0.99
EAAs 612.2 ± 20.3 162.67 ± 45.03 173.63 ± 51.92 0.00046 0.007 0.0009 1.00

Data are given as mean ± SD. Reported p-values are from Kruskal–Wallis test. Post hoc p-values (Dunn–Sidak adjustment) are reported for the following comparisons: controls vs. mild
chronic kidney disease (C vs. M-CKD), controls vs. moderate-severe chronic kidney disease (C vs. MS-CKD) and mild chronic kidney disease vs. moderate-severe chronic kidney disease
(M-CKD vs. MS-CKD). AA, amino acid; C, controls; CRS 2, cardiorenal syndrome type 2; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; M-CKD, mild CKD;
MS-CKD, moderate-severe CKD; TAAs, total amino acids; BCAAs, branched chain amino acids; EAAs, essential amino acids.
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Table 7. Plasma venous AA concentrations (µmol/L) in controls (C) and cardiorenal syndrome type 2 (CRS 2) patients after stratification for eGFR ≥ 60 mL/min/1.73 m2

(mild CKD: M-CKD) and eGFR < 60 mL/min/1.73 m2 (moderate-severe CKD: MS-CKD).

Variable C (N = 8)
M-CKD

eGFR ≥ 60 mL/min/1.73 m2

(N = 5)

MS-CKD
eGFR < 60 mL/min/1.73 m2

(N = 11)
p-Value p-Value C vs.

M-CKD
p-Value C vs.

MS-CKD
p-Value M-CKD

vs. MS-CKD

Aspartic acid 111.83 ± 10.48 36.54 ± 15.10 46.63 ± 15.35 0.00029 0.0010 0.003 0.71
Glutamic acid 206.13 ± 11.15 155.13 ± 34.08 153.49 ± 60.34 0.014 0.034 0.037 0.94

Asparagine 112.65 ± 157.39 39.04 ± 11.23 42.2 8 ± 10.37 0.005 0.017 0.013 0.96
Serine 90.83 ± 4.21 43.43 ± 20.09 41.49 ± 12.69 0.00045 0.006 0.001 1.00

Glutamine 467.25 ± 11.67 130.22 ± 28.59 127.24 ± 34.27 0.00044 0.015 0.0005 0.99
Histidine 58.38 ± 6.02 38.37 ± 27.63 37.72 ± 28.64 0.12 - - -
Glycine 258.38 ± 27.54 96.28 ± 51.79 88.13 ± 32.90 0.00044 0.018 0.00048 0.98

Threonine 106.63 ± 11.10 33.64 ± 6.98 26.64 ± 8.37 0.00031 0.048 0.00021 0.76
Citrulline 25.07 ± 2.90 8.27 ± 3.65 10.45 ± 2.99 0.00034 0.001 0.002 0.81
Alanine 327.63 ± 15.60 126.17 ± 48.59 125.65 ± 34.40 0.00044 0.005 0.001 0.99
Arginine 59.44 ± 5.85 32.47 ± 8.91 37.91 ± 19.47 0.005 0.017 0.013 0.96
Tyrosine 51.75 ± 5.70 32.30 ± 9.96 37.74 ± 14.23 0.008 0.014 0.038 0.78
Cysteine 79.38 ± 7.76 11.81 ± 5.83 32.45 ± 31.32 0.0010 0.001 0.023 0.38

Valine 153.88 ± 13.48 78.79 ± 32.25 79.74 ± 25.25 0.00046 0.007 0.0009 1.00
Methionine 10.75 ± 1.75 6.45 ± 3.29 6.68 ± 3.70 0.013 0.062 0.021 1.00
Tryptophan 51.13 ± 4.64 31.57 ± 10.19 36.69 ± 18.12 0.013 0.042 0.027 0.98

Phenylalanine 46.25 ± 5.68 20.59 ± 8.91 24.08 ± 6.75 0.00040 0.003 0.002 0.94
Isoleucine 45.75 ± 5.01 19.25 ± 6.31 19.28 ± 5.07 0.00046 0.007 0.0009 1.00
Leucine 78.13 ± 6.36 43.58 ± 13.99 43.46 ± 11.89 0.00046 0.009 0.0007 1.00
Lysine 115.75 ± 11.03 62.10 ± 23.14 57.62 ± 16.23 0.00046 0.009 0.0007 1.00

Ornithine 55.38 ± 6.72 99.14 ± 35.47 98.02 ± 29.40 0.004 0.028 0.007 1.00
TAAs 2377.56 ± 151.78 1034.19 ± 248.63 1042.92 ± 204.67 0.00046 0.008 0.0008 1.00

BCAAs 277.75 ± 12.96 141.62 ± 51.16 142.48 ± 41.10 0.00045 0.006 0.001 1.00
EAAs 608.25 ± 19.95 295.97 ± 86.42 294.19 ± 68.79 0.00046 0.008 0.0008 1.00

Data are given as mean ± SD. Reported p-values are from Kruskal–Wallis test. Post hoc p-values (Dunn–Sidak adjustment) are reported for the following comparisons: controls vs. mild
chronic kidney disease (C vs. M-CKD), controls vs. moderate-severe chronic kidney disease (C vs. MS-CKD) and mild chronic kidney disease vs. moderate-severe chronic kidney disease
(M-CKD vs. MS-CKD). AA, amino acid; C, controls; CRS 2, cardiorenal syndrome type 2; eGFR, estimated glomerular filtration rate; CKD, chronic kidney disease; M-CKD, mild CKD;
MS-CKD, moderate-severe CKD; TAAs, total amino acids; BCAAs, branched chain amino acids; EAAs, essential amino acids.
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Table 8. (A-V) AA differences (µmol/L) in controls (C) and cardiorenal syndrome type 2 (CRS 2) patients after stratification for eGFR ≥ 60 mL/min/1.73 m2 (mild
CKD: M-CKD) and eGFR < 60 mL/min/1.73 m2 (moderate-severe CKD: MS-CKD).

Variable C (N = 8)
M-CKD

eGFR ≥ 60 mL/min/1.73 m2

(N = 5)

MS-CKD
eGFR < 60 mL/min/1.73 m2

(N=11)
p-Value p-Value C vs.

M-CKD
p-Value C vs.

MS-CKD
p-Value M-CKD

vs. MS-CKD

Aspartic acid 0.27 ± 14.35 −6.05 ± 21.62 −17.10 ± 20.38 0.14 - - -
Glutamic acid −7.50 ± 21.05 −74.65 ± 56.04 −66.48 ±7 8.73 0.09 - - -

Asparagine −51.61 ± 157.21 −18.83 ± 11.79 −17.14 ± 18.13 0.067 - - -
Serine −2.44 ± 6.45 −21.63 ± 24.06 −17.71 ± 16.77 0.10 - - -

Glutamine −2.38 ± 23.05 −30.06 ± 53.39 −26.38 ± 57.49 0.19 - - -
Histidine −0.38 ± 5.04 −16.86 ± 29.60 −14.01 ± 56.25 0.057 - - -
Glycine 9.88 ± 29.98 −48.74 ± 45.88 −38.35 ± 26.97 0.006 0.051 0.008 1.00

Threonine 4.97 ± 14.84 −12.01 ± 9.50 −6.48 ± 10.76 0.19 - - -
Citrulline −0.50 ± 5.65 −2.30 ± 1.98 −3.83 ± 2.89 0.22 - - -
Alanine −15.00 ± 20.54 −58.87 ± 51.47 −51.10 ± 33.64 0.042 0.13 0.064 1.00
Arginine −0.16 ± 10.21 −3.94 ± 16.48 −11.27 ± 13.90 0.25 - - -
Tyrosine 4.50 ± 9.10 −17.49 ± 13.04 −21.02 ± 13.80 0.003 0.054 0.003 0.97
Cysteine −2.25 ± 8.10 0.92 ± 4.04 −15.73 ± 31.66 0.56 - - -

Valine 6.12 ± 19.39 −31.06 ± 25.46 −28.94 ± 26.23 0.057 - - -
Methionine −1.05 ± 1.93 −3.33 ± 4.43 −3.42 ± 4.68 0.11 - - -
Tryptophan −1.03 ± 7.65 −14.13 ± 17.42 −21.87 ± 19.78 0.026 0.29 0.022 0.91

Phenylalanine 5.05 ± 6.56 −10.60 ± 7.40 −11.73 ± 8.50 0.022 0.16 0.023 0.99
Isoleucine 1.65 ± 5.72 −8.84 ± 6.88 −8.58 ± 5.86 0.08 - - -
Leucine 0.97 ± 7.25 −23.60 ± 16.03 −21.96 ± 13.88 0.009 0.030 0.019 0.98
Lysine −8.75 ± 16.73 −29.74 ± 26.63 −17.57 ± 18.17 0.056 - - -

Ornithine 1.00 ± 10.49 −38.80 ± 44.59 −32.54 ± 28.25 0.016 0.10 0.020 1.00
TAAs 76.22 ± 138.9 −432.73 ± 384.01 −404.95 ± 327.56 0.065 - - -

BCAAs 8.75 ± 23.87 −63.50 ± 47.20 −59.48 ± 44.73 0.022 0.08 0.037 1.00
EAAs 7.95 ± 24.07 −133.30 ± 100.00 −120.56 ± 92.98 0.014 0.034 0.037 0.94

Data are given as mean ± SD. Reported p-values are from Kruskal–Wallis test. Post hoc p-values (Dunn–Sidak adjustment) are reported for the following comparisons: controls vs. mild
chronic kidney disease (C vs. M-CKD), controls vs. moderate-severe chronic kidney disease (C vs. MS-CKD) and mild chronic kidney disease vs. moderate-severe chronic kidney disease
(M-CKD vs. MS-CKD). AA, amino acid; A, arterial AA concentration; V, venous AA concentration; C, controls; CRS 2, cardiorenal syndrome type 2; eGFR, estimated glomerular filtration
rate; CKD, chronic kidney disease; M-CKD, mild CKD; MS-CKD, moderate-severe CKD; TAAs, total amino acids; BCAAs, branched chain amino acids; EAAs, essential amino acids.
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3.3. Comparison of Non-Amino Acid Variables between M-CKD and MS-CKD Patients

Table 9 shows that the two subgroups of CKD had similar concentrations of all
the variables, with the exception of creatinine, which was lower in M-CKD than in MS-
CKD patients.

Table 9. Blood non-amino acid variables in mild CKD (M-CKD; eGFR ≥ 60 mL/min/1.73 m2) and moderate-severe CKD
(MS-CKD; eGFR < 60 mL/min/1.73 m2) patients.

Variable
M-CKD

eGFR ≥ 60 mL/min/1.73 m2

(N = 5)

MS-CKD
eGFR < 60 mL/min/1.73 m2

(N = 11)
p-Values

Serum osmolarity (mOsm/L; NV = 290–320) 271.36 ± 5.35 277.08 ± 16.38 0.78
Plasma bilirubin (mg/dL; NV = 0.5–1.0) 0.80 ± 0.34 1.10 ± 0.53 0.28
Serum sodium (mEq/L; NV = 135–145) 137.80 ± 3.11 135.82 ± 3.63 0.31
Serum creatinine (mg/dL; NV = 0.6–1.2) 1.02 ± 0.08 1.60 ± 0.44 0.002
Serum potassium (mEq/L; NV = 3.5–5.0) 4.22 ± 0.59 4.10 ± 0.58 0.95

Plasma urea (mg/dL; NV = 20–40) 50.80 ± 24.45 76.09 ± 52.39 0.26
Plasma glucose (mg/dL; NV = 80–110) 93.20 ± 10.13 97.73 ± 15.84 0.61
Blood hemoglobin (g/dL; NV = 12–15) 13.34 ± 2.53 12.93 ± 2.18 0.67

Serum albumin (g/dL; NV = 3.5–5) 4.07 ± 0.58 4.54 ± 0.31 0.08
Total cholesterol (mg/dL; NV < 200) 146.40 ± 22.39 162.09 ± 53.35 0.61

Plasma triglycerides (mg/dL; NV = 60–170) 98.40 ± 33.40 112.90 ± 71.05 1.00

Data are given as mean ± SD. Reported p-values are from Mann–Whitney U-test. CKD, chronic kidney disease; M-CKD, mild CKD;
MS-CKD, moderate-severe CKD; eGFR, estimated glomerular filtration rate; NV, normal value.

3.4. Correlations between Arterial Plasma AAs, Renal and Cardiac Functions

eGFR was positively associated with arterial systolic and diastolic blood pressures
(r = +0.51, p = 0.055 and r = 0.72, p = 0.002, respectively). Several plasma AAs correlated
with LVEF and other hemodynamic variables, but not with eGFR (Table 10).

Table 10. Correlation coefficients (Spearman’s r) between plasma arterial concentrations of individual AAs (µmol/L), and
renal function and hemodynamic variables.

eGFR
(mL/min/1.73 m2) RAP (mmHg) LVEF (%) LVEDD (mm) LVESD (mm) CI (L/min/m2)

Aspartic acid 0.18 −0.03 0.53 ˆ 0.23 0.21 0.56 ˆ
Glutamic acid −0.04 −0.08 0.42 0.32 0.29 0.51

Asparagine −0.11 0.46 0.49 −0.03 −0.04 0.14
Serine 0.02 −0.01 0.26 0.06 −0.05 0.57 ˆ

Glutamine 0.28 −0.04 0.44 0.38 0.28 0.58 ˆ
Histidine −0.03 −0.14 0.16 0.42 0.34 0.12
Glycine −0.23 −0.12 −0.37 0.05 0.04 −0.06

Threonine 0.20 −0.33 0.35 0.24 0.14 0.18
Citrulline −0.29 −0.61 ˆ −0.09 0.40 0.37 0.17
Alanine −0.21 −0.51 −0.03 0.59 ˆ 0.49 0.30
Arginine −0.25 0.03 0.21 0.03 0.02 0.40
Tyrosine −0.14 −0.06 0.57 ˆ −0.10 −0.02 0.21
Cysteine −0.17 −0.2 0.22 −0.21 −0.09 −0.06

Valine 0.17 −0.30 0.57 ˆ 0.11 0.02 0.22
Methionine −0.09 −0.17 0.19 −0.15 −0.11 −0.12
Tryptophan −0.01 −0.17 0.22 0.40 0.38 0.62 ˆ

Phenylalanine −0.13 −0.06 0.51 ˆ 0.04 −0.10 0.29
Isoleucine 0.28 −0.20 0.64 † 0.09 0.04 0.41
Leucine 0.15 −0.41 0.61 ˆ 0.07 0.06 0.34
Lysine −0.13 −0.05 0.50 ˆ 0.05 0.08 0.19

Ornithine −0.30 0.22 −0.15 0.12 −0.09 −0.11

ˆ: p < 0.05; †: p < 0.01; AA, amino acid; eGFR, estimated glomerular filtration rate; RAP, right atrial pressure; LVEF, left ventricular ejection
fraction; LVEDD, left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; CI, cardiac index.
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4. Discussion

The study found that patients with CRS 2 had low arterial and venous PAA concentra-
tions, even though these metabolic substrates were excessively released by skeletal muscle
tissue. The rate of PAA deterioration was independent of the renal filtration damage.

PAA deterioration was worse in CHF and CKD patients when the two diseases were
considered together than when they were considered separately. When CHF patients
were considered alone, only aspartic acid, methionine, taurine (NYHA II and III) and
glutamic acid, and cysteine (NYHA III) were low [10]. Notably, in patients with M-CKD,
altered PAAs were similar to those observed in the CHF IV NYHA class [10]. In the early
stages of CKD (stage I and II), only valine and leucine concentrations were lower than
in controls [24], whereas in severe CKD (GFR of 7 mL/min) [25] there were increases
in several non-essential AAs and decreases in five essential AAs (threonine, tryptophan,
histidine, valine, leucine). Notably, PAA alterations in CRS 2 patients were greater than
those observed in long-term hemodialyzed patients in whom 70% of arterial AAs were
altered [26]. Higher concentrations of ornithine in MS-CKD patients than in normal subjects
suggests overactivity of the urea cycle.

The study results clearly indicate that it is clinically and metabolically important in
every patient with CHF to convert the serum creatinine levels into eGFR.

The non-dependence of AA alterations on the degree of GFR reduction clearly indi-
cates that tubular dysfunction contributes to altered PAA concentrations. Under physio-
logical conditions, proximal tubule cells reabsorb 80% of the filtrated AAs [27]. In CHF,
a tubulo-interstitial injury may coexist with normal glomerular filtration [28] and is more
evident during acute decompensation of heart failure [17,19]. Urinary levels of tubular
markers are increased in clinically stable CHF [28] and may indicate impaired GFR even
before GFR reduction [28]. Therefore, tubular injuries may bring about increased urinary
AA loss [2,29].

The complex interplay of several factors shared by CHF and CKD likely provides
an explanation of the results of this study. These factors include neurohormonal activa-
tion [30], consisting of hyperactivities of hypothalamic-pituitary-adrenal axis, adrenergic
system, renin-angiotensin-aldosterone system (RAAS), hormonal imbalances [11,31,32],
systemic inflammation [13,25,30,33,34], body/muscle AA overconsumption [10] and ab-
normal skeletal muscle intermediate metabolism [30,35–37]. All these factors alter body
hemodynamic and rheologic conditions, and metabolic homeostasis and lead to changes in
body AA/protein metabolism.

The main contributions of these factors to abnormal PAAs in CRS will be discussed
separately for arterial AA concentrations and A-V differences.

4.1. Potential Mechanisms Underlying Low Arterial AAs

AA concentrations in arterial plasma reflect body protein metabolism better than
venous plasma [38].

Under physiological conditions, arterial AA concentrations depend on both dietary
protein intake and body protein metabolism [39].

Due to the lack of information about patients’ nutritional intakes, the role of nutrition
in deteriorating PAAs cannot be delineated. However, it would be reasonable to assume
that even if the patients’ nutrition had been normal, it would have been inadequate to meet
the body’s nitrogen requirements, as inferred by the reduction in circulating essential AAs
(EAAs): substances which must be provided by exogenous sources.

The combination of hemodynamic alterations, body AA overconsumption and intra-
cellular metabolic acidosis (not determined in the study patients) may be responsible for
the altered PAAs.

Both in CHF and CKD, volume overload leads to intestinal wall congestion [40,41],
thus favoring the development of pathogenic gut flora [40,42]. Intestinal dysbiosis, in
turn, may decrease the retrieval of non-absorbed protein [43] and, at the same time, may
induce endoluminal proteolytic over-activity and urea formation. In addition, intestinal
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edema and gut dysbiosis are directly responsible for translocation of bacteria and/or their
toxic products into the blood stream [42], causing/enhancing systemic inflammation. Low
circulating citrulline suggests that the study patients may have had a dysfunctional small
bowel mucosa. This amino acid is not incorporated in proteins, and is almost exclusively
formed by enterocytes [44] and 80% of its concentration is converted into arginine in
proximal convoluted kidney tubules [45]. Therefore, low citrulline reflects low intestinal
production and/or increased intestinal ureagenesis.

The heart, the lungs, the kidney and skeletal muscle are body districts with high AA
consumption. In heart failure, there is AA overconsumption to sustain myocardium remod-
eling, a process requiring a high rate of protein synthesis and oxidative metabolism [10,46,47].
Renal dysfunction itself increases the heart remodeling rate, given that on one hand renal
disfunction (eGFR 60 mL/min/1.73 m2) is associated with left ventricular remodeling [48]
and on the other hand, the accompanying increase in extracellular water induces left
ventricular hypertrophy at a very early stage of chronic kidney disease [48].

In CHF, there is also AA overconsumption in the lungs [49], in particular in subjects
without β-blocker therapy [50]. Renal dysfunction per se causes AA overconsumption due
to gluconeogenesis, ureagenesis and structural remodeling because of tubular hypertrophy
that is caused by the concentration of ammonia in the tubule cells [51].

Metabolic acidosis lowers PAA concentrations by increasing renal AA uptake and, at
the same time, suppressing renal proteolysis [52]. Measures of acid-base balance were not
available in the study patients, however intracellular metabolic acidosis could be suspected
given the low arterial histidine concentration, an important intracellular buffer [53].

Skeletal muscle AA utilization, particularly in mitochondria, occurs both in CHF and
CKD as documented in bioptic specimens from the quadriceps muscle of CHF [35] and
CKD [36], showing exalted mitochondrial aminotransferase activities.

At first glance, low arterial AAs could be due to low venous AA concentrations; how-
ever, this is not a major mechanism as the patients, unlike controls, had low arterial/venous
AA ratios, indicating that muscle release of AAs, although in excess, was not enough to
balance AA uptake by extramuscular body districts.

In summary, the study suggests that in CRS 2 patients, the body’s AA requirements
are greater than the amount of AAs provided by the skeletal muscle, which is the main
store of AAs in the body.

4.2. Muscle AA (A-V) Differences and AA Plasma Venous Concentrations

The net muscle AA releases, in particular phenylalanine, indirectly indicate the pres-
ence of muscle protein hypercatabolism [54], whose pathophysiological mechanisms are
shared by both CHF and CKD, and include inflammation [30,33,55,56] and hemodynamic
factors such as venous congestion and hypertension, metabolic acidosis, insulin, and
growth hormone resistances.

Inflammation is a potent condition causing muscle AA depletion. The overproduction
of proinflammatory cytokines increases muscle protein degradation, inhibits both muscle
protein synthesis and repair [57–63] and increases production of catabolic hormones such
as glucagon, catecholamines and cortisol [64,65].

Both in CHF and CKD, one source of cytokine production is venous hypertension [66].
In CKD, metabolic acidosis leads to muscle AA overconsumption by accelerating

protein degradation [67].
Insulin and growth hormone (GH) resistances reduce anabolic activities both in

CHF [68] and CKD [11,69] as insulin resistance depresses the antiproteolytic activity of the
insulin [70], in particular during overnight fasting, and GH resistance causes muscle prote-
olysis given that the physiologic GH activity is to increase AA uptake into skeletal muscle.

4.3. Correlations between Cardiac Function, Renal Function and PAAs in CRS 2

The study confirms the positive correlations existing between most PAAs and cardiac
function [10]. On the contrary, no significant correlations were found between PAAs
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and renal filtration rate (GFR), suggesting that renal glomeruli have no role in body AA
metabolic homeostasis.

Regarding the heart/kidney relationship, the positive association between renal filtra-
tion rate and arterial blood pressure (both systolic and diastolic pressures) indicates that
an important determinant of GFR is the peripheral arterial pressure and consequently the
renal perfusion pressure [71] and not the cardiac output as also documented by a previous
study [72].

The lack of information about patient nutritional intake does not allow us to under-
stand the contribution of ingested salt and water intakes to the hyponatremia found in
MS-CKD. Given that sodium is the most important osmotic solute of extracellular fluid,
it would be reasonable to assume that serum osmolarity was low in MS-CKD, and low
concentrations of circulating AAs likely contributed to reduce osmolarity. Notably, in-
creased blood glucose and urea may help to maintain renal perfusion pressure, mitigate
sodium-induced hypoosmolality, and limit the extravasation of intravascular hypotonic
fluid towards the intracellular and interstitial spaces.

The higher serum albumin in MS-CKD could be due to higher protein-calorie in-
takes [73] and/or a hypovolemic state associated with hypotonic hyponatremia. This latter
mechanism may be plausible given that the patients were not on hypertonic infusions, nor
did they have serious hyperglycemia, hyperlipidemia or hyperproteinemia.

The similar PAA alterations in M-CKD and MS-CKD indicate that the renal contribu-
tion to altered AA/protein metabolism starts in the early stages of renal damage in subjects
with CHF.

4.4. Relevance of Altered PAAs for Patients with CRS 2. Potential Practical Implications

In CRS 2 patients, the alterations of AA/protein metabolism may potentially con-
tribute to and accentuate the metabolic and functional alterations of several body districts
(Table 11).

Table 11. Some examples of potential additive damage to altered physiology of CRS 2 patients from hypoaminoacidemia.

Metabolic Compartments Effects Metabolic and Clinical Impacts

Protein synthesis

(a) visceral compartment

reduced albumin synthesis [73]
reduced erythropoietin synthesis [74]

reduced immune cell proliferation, differentiation,
function [75,76]

hypoalbuminemia
anemia

impaired immune response

(b) somatic compartment
(skeletal muscle tissue) reduced contractile myofibrils [77] sarcopenia, reduced muscle strength

Brain decreased fuel provision
decreased neurotransmitter synthesis [78] altered cognition, behavior, mood, appetite

Intestine metabolism reduced energy metabolism
reduced protein synthesis [79]

small intestine injury:
mucosal barrier disruption

bacteria/toxins translocation

Kidney metabolism reduced renal mTOR complex signaling [27]

increased tubuli mitochondria dysfunction
impaired mitochondria biogenesis

reduced protein synthesis
reduced nucleotide synthesis

increased oxidative stress

Heart metabolism
mitochondrial dysfunction

altered myocardium remodeling
increased oxidative stress [10]

inadequate energy production
maladaptive remodeling

reduced left ventricular ejection fraction

Lung metabolism reduced activity of alveolar Na+/K+ pump [50] accumulation of intralveolar fluid

Acid-base balance reduced intracellular protein and AA buffers
alterations in intermediate metabolism [80]

exaltation of intracellular acidosis
reduced energy production
increased oxidative stress
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The hypoaminoacidemia in hyperazotemic CRS 2 patients raises the question of
whether it is appropriate to prescribe a hypoproteic diet before improving circulating AAs.
The authors’ opinion is that a hypoproteic diet should be prescribed in association with
EAA supplementation for the following reasons. Firstly, a hypoproteic diet alone may
further impair circulating AAs. Secondly, a bolus of oral 8 g EAAs has shown to increase
EAA plasma concentrations in healthy subjects [81]. Chronic EAA supplementation has
been shown to improve body weight, anthropometric measures, insulin resistance and
exercise tolerance in stable CHF on rehabilitative treatment [82,83]. Interestingly, in CKD
patients, physical exercise can improve protein energy wasting [84–86]. Thirdly, 8 g free
EAAs, by providing 1.28 g nitrogen vs. 3.28 g nitrogen from 100 g lean beef meat with a
similar quantity of EAAs, can save nitrogen and at the same time ensure/enhance anabolic
activities. Lastly, CHF patients release a large amount of AAs during light exercise that
mimics the physical activities of daily life [87]. Future research should address whether the
association of EAA supplementation and physical training could benefit hyperazotemic
CRS 2 in terms of improvements in the PAA profile and body/muscle anabolic activity.

It would be prudent to improve plasma AA concentrations when the patients are
clinically stable in order to limit metabolic damage following periods of acute events
requiring continuous renal replacement therapy or during hemodynamic instability [88].

This study suggests the importance of calculating nutritional intakes of patients with
CHF as soon as CHF is first diagnosed, given the high prevalence of the development of
renal damage.

4.5. Limitations of the Study

The study has several limitations that should be addressed by future research. The re-
sults of the study should be confirmed by a prospective investigation with a larger pa-
tient population.

Patients’ nutritional intakes and body tissue composition were not available. The
knowledge of nutritional intakes would have allowed us to better understand the contri-
bution of diet to circulating AAs. Body composition analysis would have allowed us to
diagnose a state of sarcopenia or cachexia. However, a depletion of skeletal muscle mass in
the study patients may be likely, given their muscle hypercatabolism [89].

A population of subjects with CHF alone was not considered in this study. For compar-
ison aims, we referred to the abnormal plasma AA profile of subjects with CHF described
in a previous investigation [10]. Similarly, the study did not compare AA concentrations in
CRS 2 patients with those in CKD patients alone.

Renal biomarkers [90] including plasma beta 2-microglobulin [91], N-acetyl-beta-
glucosaminidase (NAG) [92] and urinary kidney injury molecule-1 (KIM-1) [93] were
not available in this study. Thus, a prospective investigation is necessary to address the
relationship between levels of kidney injury markers and plasma AA levels.

Another limitation of the study is the lack of information about urine AA losses. This
information would have strengthened the discussion. A future prospective study will
address the balance between urine and plasma amino acid levels.

The knowledge of patients’ acid-base state would have allowed us to better understand
its contribution to muscle net AA releases. In addition, the determination of urinary
AA losses would have suggested the role played by proximal tubular dysfunction in
contributing to altered PAAs.

5. Conclusions

The study shows that patients with cardiorenal syndrome type 2 had very low con-
centrations of circulating AAs, the rates of which were independent of the degree of
GFR reduction.
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