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Amino acid supplements and metabolic
health: a potential interplay between
intestinal microbiota and systems control
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Abstract

Dietary supplementation of essential amino acids (EAAs) has been shown to promote healthspan. EAAs regulate, in
fact, glucose and lipid metabolism and energy balance, increase mitochondrial biogenesis, and maintain immune
homeostasis. Basic science and epidemiological results indicate that dietary macronutrient composition affects
healthspan through multiple and integrated mechanisms, and their effects are closely related to the metabolic
status to which they act. In particular, EAA supplementation can trigger different and even opposite effects
depending on the catabolic and anabolic states of the organisms. Among others, gut-associated microbial
communities (referred to as gut microbiota) emerged as a major regulator of the host metabolism. Diet and host
health influence gut microbiota, and composition of gut microbiota, in turn, controls many aspects of host health,
including nutrient metabolism, resistance to infection, and immune signals. Altered communication between the
innate immune system and the gut microbiota might contribute to complex diseases. Furthermore, gut microbiota
and its impact to host health change largely during different life phases such as lactation, weaning, and aging. Here
we will review the accumulating body of knowledge on the impact of dietary EAA supplementation on the host
metabolic health and healthspan from a holistic perspective. Moreover, we will focus on the current efforts to
establish causal relationships among dietary EAAs, gut microbiota, and health during human development.
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Background
Dietary supplementation with essential (EAAs) and/or
branched-chain amino acids (BCAAs) regulates metabol-
ism and energy balance by directly affecting peripheral tis-
sues, such as muscles, adipose tissue, and liver [1].
Moreover, EAA supplementation promotes cardiac and
skeletal muscle mitochondrial biogenesis [2–4], prevents
oxidative damage [5], enhances muscle protein synthesis
and physical endurance [2, 6–9], reduces body weight
[10–13], and increases immune function [14, 15].
Altogether, these effects have been shown to improve the
healthspan and metabolic health [16]. Notably, the effect
of EAAs drastically changes when they act in catabolic or
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anabolic conditions [1]. In catabolic states, EAAs repre-
sent mostly energy substrates, while in anabolic conditions
EAAs fuel protein synthesis and cell growth. Recently, mi-
crobial communities present in the gastrointestinal tract,
collectively termed the gut microbiota, have emerged as
important regulators of metabolism [17–29] and immune
homeostasis [30–41]. The human gut is associated with a
diverse microbial community that is composed mainly of
bacteria [19], but also includes methanogenic archaea
(mainly Methanobrevibacter smithii), viruses (mainly
phage), fungi, yeasts, and protozoa [42–45]. Metagenomic
sequencing showed that bacterial communities usually
consist of hundreds or thousands of bacterial taxa, princi-
pally pertaining to two phyla: Firmicutes and Bacteroidetes
[19]. This ensemble of organisms has co-evolved with the
human host [46] and extends the coding potential of
human genome with 500-fold more genes [44, 47]. It has
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an essential role in altering the absorption, metabolite
transformations, and energy storage [17, 23, 25, 48].
Comparing germ-free mice with otherwise syngeneic

and conventionally raised mice allows understanding
that the gut microbiota influences concentrations of the
most metabolites detected in plasma [28]. Several of
these circulating metabolites, such as bile acids and
short-chain fatty acids, regulate function and homeosta-
sis of diverse organs and tissues in a system-controlled
manner. Gut microbiota can rapidly respond to large
changes in diet [49–57], potentially facilitating the diver-
sity of human dietary lifestyles and contributing to the
host metabolic phenotype. Dietary EAAs have been sug-
gested to modulate the intestinal immune system, in
addition to their roles as building blocks for protein syn-
thesis, nutrient signals, and modulators of gene expres-
sion [58–60]. Furthermore, a BCAA-enriched mixture
(BCAAem) has been shown to rejuvenate the age-
related modifications of gut microbiota [60]. In this re-
view we will summarize the effect of dietary EAA sup-
plements, highlighting the potential interactions between
EAAs and gut microbiota (Fig. 1).

EAA supplementation affects metabolism and health
In conditions of dietary nitrogen balance, the adult protein
turnover is approximately 250 g/day [61]. Whole body
protein synthesis in humans drastically decreases with age
Fig. 1 A large panel of factors can modulate the effects of specific amino a
characteristic plasticity, and a lot of factors can modulate its composition, i
regimen and lifestyle), as well as aging, gender, and healthy or pathologica
mixtures take place in this complex panorama
being 10 times less in elderly compared to newborns.
Similarly, the protein catabolism also decreases with age.
These parameters can largely change in conditions of nu-
trient deprivation and in disease states, for example, in
traumatized or septic subjects [62]. In healthy gut, dietary
EAAs are efficiently taken up by different amino-acid
transporters in the enterocytes of proximal jejunum [63].
Moreover, EAAs, in particular leucine, have been shown
to act as potent nutrient signals. At the molecular level, it
has been shown that intracellular leucine concentration
can be sensed by the multiprotein complex leucyl-tRNA
synthetase [64, 65], which activates the mechanistic target
of rapamycin (mTOR) kinase. Amino acid-induced mTOR
activation regulates protein, lipid, and nucleotide synthe-
sis, as well as inhibits autophagy.
Dietary BCAAem supplementation has been shown to

improve motor performance and physical endurance [2].
In adult mice, mTOR signaling activated by BCAAem en-
hances the mitochondrial biogenesis partly through in-
creasing nitric oxide production [2]. In skeletal muscles of
aged rats, BCAAem recovers the reduced basal and post-
insulin mTOR and p70S6K activation and the impaired
post-insulin Akt activation [66], and improves the age-
associated loss of function and muscle mass [67].
BCAAem has been reported also to increase de novo syn-
thesis of proteins and to reduce the protein breakdown,
with rescue of rosuvastatin-induced myopathy [5].
cid supplements on gut microbiota. Gut microbiota owns a
ncluding genetic, epigenetic, and environmental factors (e.g., diet
l conditions. Dietary supplementations with peculiar amino acid
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Circulating EAA concentrations are influenced by
fasting and pathological conditions [68–71] (Fig. 2).
During starvation, EAA metabolism is directed toward
oxidation to generate ATP. This process is regulated by
activation of AMP-activated kinase (AMPK), a master
sensor of the energy balance [72, 73]. BCAA supple-
mentation has been successfully tested in acute and
severe catabolic conditions, including burns and trauma
[62]. In dialysis patients, the correction of the plasma
amino-acid profile, through administration of EAAs,
reduces proteinuria and delays the progression of renal
disease [74–76]. Moreover, the BCAA supplementation
improves prognosis and quality of life in patients with
liver cirrhosis [77, 78].
Different catabolic states, including starvation and mal-

nutrition, are known to impair immune homeostasis. In
particular, the dietary restriction of amino acids impairs
Fig. 2 Biochemistry of BCAAs. Plasma (brown), cytosolic (light blue) and m
branched-chain amino acids (BCAAs) in physiological and pathological con
the plasma and be produced by protein breakdown. Intracellular BCAAs ar
(BCAT). The resulting branched-chain α-keto acids (BCKAs, especially α-keto
kinase, resulting in elevation of the active state of the rate limiting enzyme
can be oxidized to generate ATP. Carbon originating from BCAAs enters th
CO2. Isoleucine and valine provide carbon for anaplerotic conversion of pro
isovaleryl-coenzyme A; MB-CoA, α-methylbutyryl-coenzyme A; R-CoA, acyl-c
cytotoxic T lymphocytes and natural killer cell function
[79], in addition to reduce lymphocyte proliferation [14].
In elderly people, protein malnutrition is one of the major
causes of immune dysfunction [80]. Interestingly, dietary
supplementation of BCAAs has been reported to reduce
the incidence of infections acquired in geriatric long-term
rehabilitation centers [15] as well as the risk of bacterial
and viral infection in patients with decompensated cirrho-
sis [81, 82]. Furthermore, BCAAem supplementation may
correct the nephropathy-linked anemia in hemodialysis
patients fed low protein diet [83], as well as BCAAs ameli-
orate the post-intense exercise immunosuppression [14].
In obesity, insulin resistance, and type 2 diabetes mellitus
(T2DM), the results of diverse and opposing anabolic and
catabolic signals impair amino acid catabolism leading to
the BCAA accumulation. Low circulating levels of adipo-
nectin decrease BCAA catabolism through AMPK signal
itochondrial (gray) compartments are depicted. Concentrations of
ditions are reported in the table. BCAAs can both enter the cell from
e transaminated in mitochondria by branched-chain aminotransferase
acid from leucine) inhibit branched-chain α-keto acid dehydrogenase
branched-chain α-keto acid dehydrogenase complex (BCKDH). BCAAs
e tricarboxylic acid (TCA) cycle as acetyl-CoA for complete disposal as
pionyl-CoA to succinyl-CoA. IB-CoA, isobutyryl-coenzyme A; IV-CoA,
oenzyme A
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[84]. Resistin and visfatin, adipokines highly expressed in
visceral fat, induce amino acid uptake and protein synthe-
sis. EAAs have been reported to induce mTOR activation
and increase insulin receptor substrate-1 (IRS-1) phos-
phorylation, thereby contributing to the development of
impairment of insulin signaling [85]. Indeed, elevated
blood BCAA levels have been found in conditions associ-
ated with insulin resistance, such as obesity and TDM2
[69, 86–88] (Fig. 2). Moreover, in TDM2 muscles, the
BCAA metabolite 3-hydroxyisobutyrate increases endo-
thelial fatty acid transportation, thus worsening the
muscle insulin resistance [89]. On the other hand, in se-
lected subsets of obese subjects, BCAA intake is associ-
ated with reduced body weight and body fat [90, 91].
Although the BCAAs have been shown to worsen TDM2
in obese subject, in a long-term randomized study of
elderly people with T2DM [92], as well as in patients with
chronic viral liver disease [93], BCAA supplementation
improved metabolic control and ameliorated insulin
resistance. BCAAem-supplementedmiddle-aged (16months)
mice showed increased expression of peroxisome
proliferator-activated receptor γ coactivator-1 α (PGC-1α)
and sirtuin 1 (SIRT1) and enhanced mitochondrial bio-
genesis and function in cardiac and skeletal muscles [2].
Further, BCAAem has been found to improve sarcopenia,
that is the age-associated loss of muscle mass and func-
tion, in old rats [66] and to prevent muscle atrophy in
mice bearing a cachexia-inducing tumor [94]. In middle-
aged mice, BCAAem preserved muscle fiber size, im-
proved physical endurance and motor coordination [2],
decreased protein breakdown and protected against
dexamethasone-induced soleus muscle atrophy in rats [8].
When administered orally at the beginning of rat senes-
cence, BCAAem formula has been shown to maintain the
health of kidney in aged rats [95], by inducing eNOS and
vascular endothelial growth factor expression in kidney,
thus increasing vascularization and reducing renal fibrosis.
The EAA supplementation can ameliorate myocardial
dysfunction in diabetic rats [96]. Moreover, improved
vascularization and increased collagen deposition, in
addition to the fibroblast proliferation, seem also to be in-
volved in the cutaneous wound healing obtained with top-
ical application of BCAAs and other essential amino acids
in aged rats [97].

Gut microbiota affects metabolism and health
Substantial evidence has been accumulated that gut mi-
crobial communities influence feeding, energy homeo-
stasis, endocrine systems, and brain function. The
human microbiota produces in gut lumen essential vita-
mins, including vitamin K, vitamin B12, biotin, folate,
thiamine, riboflavin, and pyridoxine, which are absorbed
by the intestine [98, 99]. During the recent years, it has
become clear that the influence of the microbiome on
health may be even more profound. In particular, it was
well established that gut microbiota can generate and in-
directly influence the concentration of proteins, includ-
ing hormones, neurotransmitters, and inflammatory
molecules with systemic effects linked to the develop-
ment of many diseases, such as obesity, T2DM, or
atherosclerosis [100–106].
Of particular interest is the bacterial production of short

chain fatty acids (SCFAs), e.g., propionate, butyrate, and
acetate from polysaccharide degradation, which can be
used from the host tissues as substrates for energy metab-
olism [24]. The abundance in the gut of organisms from
Lachnospiraceae family, or the ratio of Firmicutes to Bac-
teroides are often associated with the production of
SCFAs, and their signal to gut enteroendocrine cells is
mediated by binding to G protein-coupled receptors,
namely GPR41 and GPR43 [107, 108]. Microbiota-derived
butyrate has been reported to regulate levels of glucagon-
like peptide 1 (GLP-1), which is produced by enterocytes
[109–111]. GLP-1 enhances the glucose-dependent insulin
secretion of the pancreatic beta cells [112]. Butyrate has
been reported to act as an anti-inflammatory molecule,
both on circulating immune cells and enterocytes, thus
regulating gut-barrier properties [113–115]. Propionate
production seems to be particularly relevant in human
health, because it promotes satiety, and prevents the
hepatic lipogenesis lowering thus cholesterol production
[116–118].
Studies on microbial community structure by 16S

rRNA gene sequencing have shown that relatively better
energy-harvesting bioreactors promote energy storage,
increasing the predisposition to obesity [25, 48]. The
high ratio of Firmicutes to Bacteroides, observed in gut
microbiota from obese patients, influences degradation
of polysaccharides to SCFAs, in particular increasing
acetate and decreasing butyrate production [29]. Increas-
ing blood levels of acetate correlate with insulin resist-
ance development, and they increase production of the
orexigenic peptide ghrelin in the stomach [119]. Lower
butyrate levels are linked to low level inflammation,
which in turn decreases insulin resistance [17, 21, 26].
Studies in humans also suggest a role for the gut

microbiota in T2DM. In particular, when treatment-
naïve patients with metabolic syndrome received intes-
tinal transplantation either from lean donors or from
their own feces, recipients of feces from lean donors
have a higher abundance of butyrate-producing bacteria
linked to improvement of insulin sensitivity [26].
The composition of the gut microbiota is not

constant during the lifetime of the host and changes
with age [120], owed to several reasons, including
alterations in intestinal functions or inflammatory
processes [121–126]. Importantly, aging is associated
with a shift in the ratio of Bacteroidetes to Firmicutes
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species [125, 127]. Indeed, in people over 60 years
the total number of facultative anaerobic microbes
(i.e. Firmicutes) increases, while the proportion of
Bifidobacteria decreases in comparison to young
subjects. The age-related changes of the gut micro-
biota have been found especially important in patho-
physiological processes of the age-related disorders,
such as frailty [128], neurodegeneration [129], cogni-
tive decline [130], T2DM [131], and cardiovascular
diseases [132, 133].
Different environmental factors can influence gut

microbiota composition. Recent study demonstrated that
exposure of mice to cold was accompanied to a change
in microbiota taxa and caused browning of white adi-
pose tissue, with increase of insulin sensitivity and heat
production, in addition to weight loss when compared
to control mice. Transplantation of the cold-adapted
microbiota from cold exposed mice was sufficient to
promote browning of white adipose tissues and to en-
hance insulin sensitivity in warm recipient mice [134].
Also the diet regimen rapidly and efficiently modifies

the relative abundance of specific bacterial taxa [23] and
virus [135]. The relevance of this fast, diet-induced dy-
namics is demonstrated by the microbial changes that are
observed over 1–2 days when subjects add dietary fibers
to their diet, or consume either a high-fiber and low-fat
diet or a low-fiber and high-fat diet for 10 days [49]. From
an evolutionary perspective, these changes were selected
to maximize energy harvested by food. Indeed, microbiota
acts in the intestine as a bioreactor, which permits degrad-
ation of otherwise indigestible dietary fibers (i.e., polysac-
charides) [24]. Interpersonal variations in the virome are
high, even in co-twins and their mothers sharing similar
fecal bacterial communities [45]. Dietary intervention is
associated with a change in the virome community to a
new state, in which individuals on the same diet converged
[135]. The functional relevance of this gut virome modifi-
cation in metabolic health is, however, still unknown.
Modifications of the gut microbial composition affect

host metabolism. Colonization of adult germ-free mice
with a distal gut microbial community harvested from
conventionally raised healthy mice causes a dramatic in-
crease in body fat within 10–14 days, despite an associated
decrease in food consumption [25]. Compared with
microbiota of lean persons, intestinal microbial compos-
ition of obese individuals has less diversity [136], and it is
characterized by lower prevalence of Bacteroidetes and a
higher prevalence of Firmicutes [137]. Modification of gut
microbiota, by either cohousing [138, 139] or antibiotic
treatments [140] or transplantation of fecal microbiota
from obese versus lean subjects, can modify obesity and
metabolic phenotype [25, 27, 141]. These results reveal
that transmissible and modifiable interactions between
diet and microbiota influence host biology.
Likewise, gut microbiota composition is in turn in-
fluenced by a wide range of pathologies (e.g., asthma,
arthritis, autism, obesity) [20, 142], and the disease
phenotype can be transferred by microbiota transplant-
ation. In fact, recent studies suggest that the micro-
biome may be a reflection of obesity (or leanness), as
well as a cause of it. When obese people are main-
tained to reduced energy intake with diet and lose
weight, the proportion of Bacteroidetes increases rela-
tive to Firmicutes. Conversely, when obese people re-
sume their previous food consumption and gain
weight, the proportion of Firmicutes increases [100].
In addition to promoting the absorption of monosac-

charides from the gut lumen, the microbiota from obese
mice selectively suppresses the production of the circu-
lating lipoprotein lipase inhibitor Fiaf (fasting-induced
adipose factor/angiopoietin-like protein 4/peroxisome
proliferator-activated receptor γ angiopoietin-related
protein), thus inducing de novo hepatic lipogenesis and
deposition of triglycerides in adipocytes and liver [143].
Specific gut bacterial taxa in obese humans and animals
metabolize faster phosphatidylcholine to choline, tri-
methylamine N-oxide (TMAO), and betaine taken with
diet. TMAO has been shown to accelerate atheroscler-
osis by forward cholesterol transport via upregulation of
macrophage scavenger receptors [144].
Interactions between the host immune system and

gut microbiota prevent the overgrowth of otherwise
under-represented or potentially harmful bacteria (for
example, pathobionts) [30, 48]. On the other hand, gut
microbiota itself shapes the development of the
immune system through a vast range of signaling path-
ways [38]. Conventional or germ-free housing condi-
tions impact peripheral immune system development
in immunocompetent hosts [41].
Dietary fats increase the bile acid taurocholic, there-

fore altering gut microbiota and promoting colitis in
genetically susceptible mouse model [145]. Bacteroides,
and in particular Bacteroides fragilis, have been sug-
gested to promote many immune functions of the host.
The capsular polysaccharide A (PsA) of Bacteroides
fragilis drives differentiation of interleukin-10 (IL-10)-se-
creting Treg cells. Monocolonization with Bacteroides
fragilis, but not with a mutant lacking PsA, stimulates
dendritic cell IL-12 production and corrects systemic T
cell deficiencies and Th1/Th2 imbalance [145].

Interaction between amino acid supplementation and gut
microbiota
Given the link between gut microbiome and increasing
risk to develop many diseases (e.g. obesity, T2DM, ath-
erosclerosis), the manipulation of the gut microbiota
might be a plausible strategy to reduce this risk [146].
Moreover, gut microbiota shows a great plasticity and it
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could be mostly modified by different factors, such as di-
ets or supplements [53].
Dietary proteins and amino acids are important sub-

strates for microbial fermentation in the colon [147],
where they also serve as important nitrogen sources for
the microbiota and support the growth of microbiota
and host [51]. Several research groups have shown that
maternal diet affects the colonization of the gut of pups
[121], also through epigenetic mechanism [148]. Dietary
amino acid intake increases the relative abundance of
Bacteroidetes [27, 51]. In particular, supplementation
with BCAAem to middle aged mice (15 months) caused
a significant reduction in the Firmicutes/Bacteroidetes
ratio [60]. Notably, this ratio was comparable to the ratio
observed in the 11-month-old mice [60]. In line with
these results, BCAAem supplementation significantly
changed fructose, sucrose, and oleic acid gut metabol-
ism. Much more information is needed about how the
BCAAem supplementation modulates structural and
functional properties of gut microbiota, and what is the
link with the healthy effects of the BCAAem supplemen-
tation as previously described [1, 2].
Several common mechanisms are shared by healthy

microbiota and dietary EAAs. Essential amino acids
can increase the expression of intestinal β-defensin,
the endogenous small cationic polypeptide that func-
tions as a broad-spectrum antimicrobial substance, and
thus potentially the amino acids greatly affect the gut
microbial community composition [58, 59]. Further-
more, both EAAs and microbiota-derived SCFAs
modulate the overall lipid balance and glucose metab-
olism [1, 18]. Similarly, oral administration of BCAAs
or the microbiota-derived butyrate induce a dose-
dependent increase in GLP-1 release from enterocyte
[110, 149, 150], and decrease the expression of genes
involved in the intestinal fatty acid transport and lipogen-
esis (i.e., acetyl-CoA carboxylase and fatty acid synthase).
EAAs may also modify the abundance of gut metabolites
by influencing cholecystokinin production and gallbladder
contraction [151]. On the other hand, the intestinal dys-
biosis alters gut barrier properties and, thus, it may reduce
the diet-induced healthy effect [152].
Another point yet to be clarified is whether the sup-

plementation of specific amino acid mixtures is able to
modify metabolic diseases, including obesity and T2DM,
via gut microbiota modifications, and how this effect can
be permanent. The plasma concentration of some EAAs,
including BCAAs, is higher in obese T2DM patients
than healthy subjects [87]. Obese T2DM patients have
also a peculiar gut microbiota composition [25]. In par-
ticular, the depletion of species from the Bacteroides
genus in obese individuals is related to higher plasma
concentration of BCAAs [153]. Of particular interest is
the possibility that a subset of gut microbial communities
directly synthetized EAAs by themselves, EAAs that
would be subsequently absorbed by the intestinal mucosa.
Many components of the gut microbiota possess the en-
zyme to directly synthetize essential amino acids [154,
155]. Indeed, the gut microbiota from obese subject
synthetizes BCAAs, while it strongly decreases BCAA ca-
tabolism [153]. Thus, the plasma EAA concentrations
may be not entirely the consequence of oral EAA intake.
On the other hand, oral EAA administration may modify
gut microbiota and, consequently, modify (i.e., reduce)
paradoxically the plasma EAA concentrations.
Human body metabolism is the result of complex

interactions between genetic, epigenetic, and environmental
(primarily dietary and lifestyle) factors [156, 157]. Gut
microbiota controls metabolism through physiologically im-
portant biochemical circuits, which are parts of energy con-
sumption, storage, and distribution [124]. Gut microbiota
plays key roles in controlling body metabolism, resistance to
infections, and inflammation, as well as preventing
autoimmunity disorders and cancer [18, 20, 38].
Brain-gut axis represents an important communica-
tion system that regulates whole body energy balance.
Information exchange between gut and brain is essen-
tial for mammals to adapt to changing environments
[38, 158]. EAA supplementation has been shown to
improve the health span and metabolic health [16], by
reducing body weight [159], increasing immune
homeostasis [14, 15], promoting mitochondrial bio-
genesis [2–4], preventing oxidative damage [5], and
enhancing muscle protein synthesis and physical en-
durance [2, 6–9].
Many aspects of amino acid effects on gut microbiota

remain to be addressed, for example, whether the different
effects of EAAs, acting either in catabolic or anabolic con-
ditions, may be partially attributed to differences of the
gut microbiota composition in these metabolic conditions.
Moreover, whether EAAs through gut microbiota play
some roles in human development, a number of hypoth-
eses about microbial contributions to human development
have been proposed in the past decade. One hypothesis is
that maternal microbial ecology affects pregnancy, fetal
development, and the future health of offspring [121]. Ma-
ternal vaginal, gut, and oral microbiota have relevant im-
pact on fetal nutrition and development [121]. Alterations
of maternal microbiota are thought to contribute to gesta-
tional adverse events, such as the preterm delivery. A
compelling question is whether EAA supplements may fa-
vorably change the properties of the vaginal and gut mi-
crobes before, during, and after pregnancy. A recent study
has shown that microbial community structure and func-
tion expand and diversify in all body sites from birth to
age 4–6 weeks, and it then resembles microbiota from the
corresponding maternal body site [160]. A related ques-
tion is whether microbes associated with breast milk,
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which are highly personalized assemblages [161] and
colonize the infant colon, such as some anaerobic species
(Bifidobacterium), may be modified by maternal supple-
mentation with EAAs. For example, specific EAA formu-
las might support growth of bifidobacterial subspecies
important for infant gut barrier development and function
[162], improved vaccine responses, such as the Bifidobac-
terium longum subsp. Infantis [163], or production of es-
sential nutrients, including folate and riboflavin [164].
Completely undefined in infant development is the role of
father’s microbiota and its changes, potentially induced by
diet and dietary supplements.
Little is known about the influence of gender on gut

microbiota composition, and how this factor can affect
the efficacy of amino acid supplements [57, 120]. Few
studies have been conducted to investigate the role that
sex plays in development and age-related changes of
microbiota composition, increasingly evident starting at
puberty and most defined in adult and aged subjects
[165]. It seems that males and females are uniquely
susceptible to factors that shape the microbiota after
birth. Male microbiota, in fact, provides testosterone-
dependent protection from T1DM in a model of non-
obese diabetic mice [166].
Several findings suggest bidirectional communication

between the gut and the brain in behavioral, psychiatric,
and neurodegenerative disorders. The microbiota regu-
lates, in fact, expression of the 5-hydroxytryptamine recep-
tor (5-HT1A), brain-derived neurotropic factor (BDNF),
and NMDA receptor subunit 2 (NR2A) [167–169]. Thus,
anxiety, hyperactivity, depression, nociception, and autism
spectrum disorder are among the other psychiatric disor-
ders to be linked to intestinal microbial communities
[170–172]. Although the BCAAs do not act as direct pre-
cursors for neurotransmitters, they can affect transport of
large neutral amino acids (LNAAs), including the BCAAs,
across the blood–brain barrier, and thereby influence CNS
concentrations of diverse neurotransmitters [173]. BCAAs
can also be catalyzed in the astrocyte to produce glutamate
and branched-chain α-keto acids, which are further taken
up by neurons [174]. With the aim to reduce brain tyro-
sine uptake, BCAAs were given to bipolar subjects during
periods of mania [175]. Sixty grams BCAAs were adminis-
tered daily for 7 days and produced a significant reduction
in manic symptoms, consistent with an effect on brain cat-
echolamine. Gut microbiota might be hypothesized to play
some role in this effect.
The gut microbes have recently been reported to pro-

mote α-synuclein pathology, neuroinflammation, and
characteristic motor symptoms in a validated mouse
model of Parkinson disease (PD). Notably, fecal
microbes from PD patients impair motor function
significantly more than microbiota from healthy controls
when transplanted into mice [176]. Analogously, specific
microbe ensembles influence stroke recovery in mice
[177, 178], and amino acid supplements may potentiate
this effect.
Although a body of knowledge is accumulating that

suggests potential interactions between EAAs and gut
microbiota and their effects on metabolic health and
health span, the complex interplay between dietary
amino acids and intestinal microbes remains largely un-
known. In particular, it remains to be addressed whether
the different effects of EAAs, acting either in catabolic
or anabolic conditions, may be partially attributed also
to differences in gut microbiota composition in these
metabolic conditions. Furthermore, based on the current
knowledge, the effects and metabolic fate of the dietary
EAAs can be largely modified by different gut micro-
biota ensembles. Both EAA diet supplementation and
gut microbiota contribute to human health acting at a
systemic level. The precise interplay and the nature of
their interactions are still poorly understood and they
may help to predict more accurately the therapeutic
effect of nutraceutical interventions with specific amino
acid formulas.

Conclusions and future perspectives
Studies of the human gut microbiota have changed how
researchers view the pathophysiology of widely diffused
metabolic disorders, particularly those linked to age.
Humans co-evolved with a web of thousands of microbes,
including not only bacteria, but also viruses, fungi and
unicellular organisms called Archaea, with which strict re-
lationship exists. Human intestine provides a comfortable
environment and nutrients for microbes, and they digest
food for us; in addition, they keep away pathogen mi-
crobes, synthesize vitamins, organize immune function,
and transfer important messages to brain. Thus, it is pos-
sible that metabolic problems in humans could be man-
aged with adequate care of the gut microbiota. Since the
disturbance of microbial ecology and eco-systems are cru-
cial for physiology in different human life periods, the
knowledge of diet and dietary supplement impact on the
gut microbiota might be very important for health. Dietary
fibers and prebiotics—i.e., substances that induce the
growth or activity of microorganisms contributing to the
wellbeing of their host—are known to influence health in
children and adults. We hypothesize that specific amino
acid mixtures are likely to be of benefit to people who fol-
low a typical Western-style diet, in addition to dietary
fiber and prebiotics. A deeper understanding of the efficacy
of such dietary supplements to maintain gut microbiota
has the potential to contribute important therapeutic tools
in human metabolic health and weight control.
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