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the maximal intake of protein with no adverse effect is not 
known, and that high levels of protein intake is associated 
with increased transfer of protein to the colon with poten-
tial deleterious effects. Thus, it is important to examine in 
each individual case the benefit that can be expected from 
supplementation with whey protein, taking into account the 
usual protein dietary intake.
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Abbreviations
LBM  Lean body mass
MPB  Muscle protein breakdown
mTOR  Mammalian target of rapamycin
MPS  Muscle protein synthesis
IGF-1  Insulin growth factor 1
p70S6k  Protein kinase p70S6
WPI  Whey protein
EAA  Essential amino acids
BCAA  Branched-chain amino acids
FSR  Fractional synthesis rate

Introduction

The human body is in a constant process of protein synthe-
sis and degradation, and this metabolic cycle can be influ-
enced by many factors, including physical activity, caloric 
deficit and senescence. The rate of renewal is about 300 g 
of protein per day (Lancha and Pereira-Lancha 2012), rep-
resenting approximately 2% of the total protein content 
in adult man weighing 70 kg. Around 40% of body pro-
tein are contained in skeletal muscle, and their turnover 
is considered as relatively slow when compared with the 

Abstract Supplementation with whey and other dietary 
protein, mainly associated with exercise training, has 
been proposed to be beneficial for the elderly to gain and 
maintain lean body mass and improve health parameters. 
The main objective of this review is to examine the evi-
dence provided by the scientific literature indicating ben-
efit from such supplementation and to define the likely 
best strategy of protein uptake for optimal objectified 
results in the elderly. Overall, it appears that an intake of 
approximately 0.4 g protein/kg BW per meal thus rep-
resenting 1.2–1.6 g protein/kg BW/day may be recom-
mended taking into account potential anabolic resistance. 
The losses of the skeletal muscle mass contribute to lower 
the capacity to perform activities in daily living, emphasiz-
ing that an optimal protein consumption may represent an 
important parameter to preserve independence and con-
tribute to health status. However, it is worth noting that 
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splanchnic area turnover (Wall and van Loon 2013). The 
protein turnover is characterized by the balance between 
muscle protein synthesis (MPS) and muscle protein break-
down (MPB). Resistance training combined with adequate 
protein intake results in a positive protein turnover, with 
values of MPS being higher than MPB, leading then to 
muscle accretion (Cermak et al. 2012). In contrast, caloric 
restriction periods and/or senescence appears to increase 
the levels of MPB and lower MPS, resulting in a negative 
protein turnover and consequently muscle wasting (Areta 
et al. 2014; Barkoukis 2016; Phillips 2009). Over the time, 
the human muscle mass is dictated by the changes in MPS 
and MPB (Deutz and Wolfe 2013; Phillips 2004; Rennie 
et al. 2004).

To promote a positive protein turnover, it is necessary to 
take into account the quality of the protein source. Protein 
derived from dairy foods are considered as among the best 
in terms of the quality of protein sources (Hartman et al. 
2007; Wilkinson et al. 2007). Regarding this latter aspect, 
whey protein is a fraction (~20%) of the milk protein, 
which is characterized by a high biological value notably 
because of its high content in essential amino acids, and 
particularly high leucine concentration (Pennings et al. 
2011a). Leucine has been shown, at least in some cells 
and animal models, to be able to stimulate protein syn-
thesis through the signaling pathway of the mammalian 
target of rapamycin complex 1 (mTORC1) (Churchward-
Venne et al. 2014a; Dickinson and Rasmussen 2011; Farn-
field et al. 2012; Layman et al. 2015). This signaling path-
way is responsible for promoting changes in transcription 
of genes involved in protein synthesis, hence resulting in 
muscle remodeling (Dickinson and Rasmussen 2011; Farn-
field et al. 2012; Fernandes et al. 2008). The mTORC1 is 
regulated by several cell signaling processes, which can be 
influenced by many external factors including amino acid 
availability and physical activity (mainly resistance train-
ing) (Churchward-Venne et al. 2014a; Daly et al. 2014; 
Dickinson et al. 2011; Dickinson and Rasmussen 2011; 
Kimball and Jefferson 2006; Farnfield et al. 2012). Inter-
estingly, it appears that leucine can interact and stimulate 
mTORC1 in a different manner than resistance training 
(Duan et al. 2015; Farnfield et al. 2012; Wolfson et al. 2016; 
Saxton et al. 2016). Thus, an interesting strategy may be to 
combine these two stimuli, namely resistance training and 
leucine availability, to promote protein synthesis through 
dedicated signaling pathways. This increased stimulation 
of MPS may result in a positive protein turnover, which can 
contribute to the maintenance of skeletal muscle mass and 
possibly for muscle hypertrophy (Churchward-Venne et al. 
2014a; Farnfield et al. 2012). Therefore, it is of paramount 
importance to understand the mechanisms involved in the 
stimulation of the mTORC1 signaling pathway, since this 

pathway is partly responsible for the muscle anabolism 
(McGlory and Phillips 2015).

The present review aimed at presenting current evi-
dence suggesting that whey and other dietary protein sup-
plementation may exert some beneficial effects in different 
subpopulations, contributing to the maintenance of skeletal 
muscle mass in the elderly. Since the upper level of protein 
consumption with no adverse effect is not known, we also 
discuss whether dietary protein, when consumed in exces-
sive amounts, may cause some deleterious effects in the 
large intestine and kidney. To this end, a literature review 
was conducted using the scientific databases PubMed and 
Scholar Google.

Dietary protein characteristics

Given the well-known important role of amino acids not 
only as substrates for protein synthesis, but also as involved 
in various physiological and metabolic functions, the 
choice among the different sources of alimentary protein, 
with different amino acid content and digestibility, repre-
sents an important aspect to choose optimal dietary protein 
for effective effect on skeletal muscle physiology. Regard-
ing this latter point, the whey protein can theoretically 
guarantee the supply necessary for the stimulation of MPS 
(Burd et al. 2012; Devries and Phillips 2015; Farnfield 
et al. 2012; Tang and Phillips 2009). Compared with soy 
protein, casein and collagen, whey protein has higher rela-
tive amount of EAA and leucine. Furthermore, amino acids 
derived from soy protein for instance appears less bioavail-
able than amino acids derived from casein and whey protein 
(Devries and Phillips 2015). In addition, whey protein can 
release biologically active peptides, which facilitate intesti-
nal absorption (Meisel and Bockelmann 1999). When com-
paring whey protein with soy protein or whole milk, there 
is a higher rate of amino acid and oligopeptide absorption 
in the intestinal tract from the whey protein. Furthermore, 
whey protein consumption provides a higher stimulation of 
protein synthesis after resistance exercise when compared 
to other protein sources (soy and casein) (Poortmans et al. 
2012). Lastly, it has been proposed that whey protein may 
contribute to immune function (Witard et al. 2014).

Recent studies indicate that the availability of intracel-
lular amino acids, particularly leucine, can represent a key 
regulator of protein synthesis in skeletal muscle after amino 
acid intake. Previously, it was believed that the pool of 
extracellular amino acids was the main responsible for this 
regulation. More studies are required to clarify this issue, 
but it appears that both intracellular and extracellular amino 
acids are important for the regulation of protein synthesis 
(Dickinson and Rasmussen 2011).
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Therefore, the increase in the postprandial situation of 
MPS seems to be modulated by different factors, such as 
the source of protein ingested (Baer et al. 2011; Phillips 
et al. 2009; Reitelseder et al. 2011; Walrand et al. 2016), 
digestibility, postprandial amino acid availability and 
hyperaminoacidemia/hyperleucinemia (Mitchell et al. 
2015a; Smith et al. 1998, Walrand et al. 2016; West et al. 
2011; Paddon-Jones et al. 2006; Tang and Phillips 2009; 
Tipton et al. 1999; Volek et al. 2013; Volpi et al. 2003).

High protein diets and sarcopenia

The quantity and quality of dietary protein have been shown 
to impact human health parameters in numerous studies 
(Wu 2016; Blachier et al. 2010). Among the different met-
abolic and physiological parameters examined, the impact 
of alimentary protein on skeletal muscle mass loss has been 
examined (Murphy et al. 2016). The loss of skeletal muscle 
mass that starts around the 4th decade of life, named sarco-
penia, is a process which occurs at a rate of approximately 
0.8% per year, accompanied in some cases by a subsequent 
increase in adipose tissue. To make a long story short, sarco-
penia is a multifactorial and complex process resulting from 
aging-induced changes in the human organism, including 
altered muscle fiber type distribution and negative net pro-
tein balance (Cruz-Jentoft et al. 2010; Fielding et al. 2011; 
Gumucio and Mendias 2013; Paddon-Jones and Rasmus-
sen 2009; Riddle et al. 2016; Rosenberg 1997). After the 
sixth decade of life, the loss of skeletal muscle mass may 
increase to a rate of approximately 15% per decade. Such 
muscle loss can be worsened by immobility/disuse/bed rest, 
changes in endocrine function, chronic diseases, inflamma-
tion, insulin resistance and nutritional deficiencies (Coker 
and Wolfe 2012; Fielding et al. 2011; Malafarina et al. 
2013). This progressive loss of muscle mass and strength 
can impair the quality of life, since activities of daily living 
become more difficult to be performed (da Silva et al. 2014; 
Velazquez et al. 2013) and the risk of falls and fractures 
increase (Landi et al. 2012; Scott et al. 2014).

Furthermore, the skeletal muscle is the largest site of 
lipid oxidation and consumes a large amount of glucose 
(Argilés et al. 2016; DeFronzo et al. 1992). Then, losses 
in this tissue result in lower rates of lipid oxidation and an 
increase in the blood glucose levels, which may contribute 
to diabetes type II, obesity, and metabolic syndrome (Bauer 
et al. 2013; Breen and Phillips 2011; Han et al. 2010; Jurca 
et al. 2005; Ruiz et al. 2008; Wolfe 2006). The skeletal 
muscle, concomitantly with the liver, is the most impor-
tant tissue responsible for thermogenesis (Johnstone et al. 
2005). Therefore, skeletal muscle plays a key role in the 
maintenance of metabolic regulation (Argilés et al. 2016; 
Wolfe 2006).

As a natural geriatric condition, it is important to seek 
strategies to counteract this process, given the advanc-
ing age of the global population, as predictions suggest 
that about 200 million people will be affected by sarcope-
nia in 2050 (Janssen 2011). Sarcopenia can be influenced 
by lifestyle factors, such as reduced physical activity lev-
els (Nair 2005) and suboptimal protein intake (Volpi et al. 
2013). It is well established that consuming protein meals 
containing EAAs and physical activity—mainly resistance 
exercise—can stimulate MPS (Burd et al. 2010a, b, 2012; 
Churchward-Venne et al. 2014a; Volek et al. 2013), there-
fore, serving as key regulators to maintain muscle mass. 
However, current evidence suggests that, unfortunately, 
older adults are less sensitive to the stimulatory effects of 
the nutrient ingestion (Cuthbertson et al. 2005; Pennings 
et al. 2012) and physical activity (Durham et al. 2010; Fry 
et al. 2011; Kumar et al. 2009) on MPS compared with 
younger population.

A possible cause of this less pronounced MPS after 
nutrient ingestion by the elderly is due to a decreased 
capacity of digestion and absorption of protein and amino 
acids (Boirie et al. 1997), concomitantly with a greater 
amino acids retention by splanchnic area after intestinal 
absorption (Boirie et al. 1997; Volpi et al. 1999). This may 
result in less quantities of amino acids available for MPS 
stimulation. However, there are discrepancies in studies 
aiming at determining whether the postabsorptive MPS is 
reduced with aging. Indeed, although several studies have 
shown lower levels of MPS in the postabsorptive period in 
the elderly (Welle et al. 1993; Yarasheski et al. 1993); oth-
ers have shown no significant difference between young 
and elderly (Cuthbertson et al. 2005; Katsanos et al. 2006). 
Two recently published cohort studies (Markofskia et al. 
2015; Wall et al. 2015) performed over 10 and 5-year 
periods, respectively, analyzed the basal MPS of over 300 
healthy, non-obese young and older adults and showed 
no difference in the postabsorptive rates of MPS between 
young and old individuals. These results give an important 
information indicating that the basal rates of MPS may not 
be altered with aging to any significant extent.

However, Markofskia et al. (2015) observed a higher 
phosphorylation of mTOR and its downstream S6K1 in the 
elderly despite no changes in MPS. This situation was pro-
posed to be associated with an increased mTORC2 sign-
aling and insulin resistance, together with a deficit in the 
mTOR phosphorylation after the provision of an anabolic 
stimuli, such as exercise, insulin and nutrition. In agree-
ment with this hypothesis, the decreased sensitivity of MPS 
may be related to the lower response to insulin (Rasmussen 
et al. 2006), which may affect both MPS and MPB. Insu-
lin is released to a higher extent by increased amino acids 
concentrations (Blachier et al. 1989a, b), although, interest-
ingly, old people appears to be less sensitive to this stimuli 
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(Biolo et al. 1999; Borsheim et al. 2004; Chow et al. 2006; 
Fujita et al. 2006; Wilkes et al. 2009). This may lead, there-
fore, to suppressive effects of hyperinsulinemia in the MPS 
and MPB (Churchward-Venne et al. 2014b; Fujita et al. 
2009). In support of this proposition, a possible cause of 
the impaired MPS in some elderly, as presented by Wall 
et al. (2015), could be related to the lower insulin sensitiv-
ity; this parameter being reflected by higher glycated hemo-
globin, fasting insulin, and Homeostatic Model Assessment 
of Insulin Resistance index.

Moreover, there is also an apparent lower sensitivity of 
the aging muscle to the stimulation of MPS by hyperami-
noacidemia/hyperleucinemia after protein ingestion (Kat-
sanos et al. 2006; Pennings et al. 2012). This may be due 
to signaling defects, resulting in reduced phosphorylation 
of mTORC1 and its substrate p70S6k; as a possible conse-
quence of differences in the expression and function of spe-
cific amino acids transporters that can be altered with aging 
(Cuthbertson et al. 2005; Dickinson et al. 2013; Francaux 
et al. 2016; Guillet et al. 2004).

Increased oxidative stress (Dardevet et al. 2012) and low 
grade inflammation (Breen and Phillips 2011; Dardevet 
et al. 2012; Haran et al. 2012; Ticinesi et al. 2016) may also 
contribute to reduce the ability of some elderly to display 
a normal stimulation of MPS. Thereby, all these complex 
mechanisms may be partly responsible for the reduction 
of the sensitivity of the aging muscle to the stimulatory 
effects of protein and amino acids ingestion, leading to an 
impaired capacity to promote muscle protein synthesis. 
This condition features the so-called “anabolic resistance” 
of the senescent skeletal muscle (Burd et al. 2013; Rennie 
2009), which is responsible for downregulation of MPS 
which then may be at lower levels than MPB, resulting in 
a negative protein net balance. Such a negative net balance 
may lead, over the time, to a loss of skeletal muscle mass. 
However, all this factors seems to play a secondary role as 
a cause of anabolic resistance, since the reduced level of 
habitual physical activity by the older population is likely 
to be the main responsible for the aggravation observed in 
this aging condition (Burd et al. 2013; Breen et al. 2013).

The proposed anabolic resistance observed in some 
elderly is in relationship with the hypothesis of an “ana-
bolic threshold” or “leucine threshold” regulating the MPS, 
which has to be reached to initiate the MPS (Dardevet et al. 
2012; Norton et al. 2009; Rieu et al. 2006). Therefore, it 
seems that the older population requires greater concen-
trations of leucine in the blood circulation to achieve this 
“threshold” for the same MPS than the young individuals 
(Bauer et al. 2013; Breen and Phillips 2011; Daly et al. 
2014; Dardevet et al. 2012; Katsanos et al. 2006). The 
study performed by Moore et al. (2009) showed that only 
~1 g of leucine (about 10 g of whey protein) is necessary 
to stimulate MPS above basal levels in young individual 

muscles at rest, while Yang et al. (2012a) concluded that a 
minimum amount of ~2 g of leucine (about 20 g of whey 
protein) are required to rise MPS above basal rates in the 
elderly at rest.

This issue is of paramount importance as older people 
tend to consume less dietary protein daily, partly due to 
reduced energy needs (Fulgoni 2008; Volpi et al. 2013). 
This remains a serious problem since about one-third of 
adults who are above the age of 50 consume less than the 
current recommended dietary allowance (RDA), which 
is 0.8 g/kgBW/day, whereas approximately 10% of older 
women do not even reach 0.66 g/kg/BW of protein per day 
(Houston et al. 2008; Wolfe and Miller 2008; Wolfe et al. 
2008). In addition, some elderly ingest small portions of 
protein in each meal, a fact that contributes to the loss of 
skeletal muscle mass. Indeed, small quantities of protein 
seem to have low effects on the stimulation of MPS, even 
if the quality of protein is high (Katsanos et al. 2005). 
The situation is further complicated by the fact that older 
people tend to start the day with small portions of protein 
(~15 g) and end their day with a meal characterized by 
high protein content in the evening (~50 g), resulting in a 
large period of imbalance between MPS and MPB during 
the day (Berner et al. 2013). This imbalanced protein intake 
may contribute to decrease the rates of MPS, as the elderly 
appears to require greater amounts of protein at each meal 
to raise MPS above basal levels (Moore et al. 2015; Yang 
et al. 2012a). Then this routine appears to be not ideal for 
the maintenance of muscle mass with aging, since regular 
consumption of meals containing protein of high quality 
(≥0.4 g protein/kg BW) throughout the day may likely be 
more effective to stimulated MPS (Moore et al. 2015; Mur-
phy et al. 2015; Paddon-Jones and Rasmussen 2009).

This latter hypothesis was recently tested by Mamerow 
et al. (2014) which performed a 7 days crossover study 
using isonitrogenous diet to measure the changes in MPS 
over 24 h with an even or irregular protein distribution in 
healthy young and middle age adults. The even distribution 
consisted in approximately 30 g of protein in breakfast, 
lunch and dinner. Over 24-h period, MPS was 25% higher 
in the even distribution than in the irregular distribution. 
The strategy of regular protein consumption appears inter-
esting since the rise of MPS by protein intake is transient, 
reaching the peak within approximately 2 h and returning 
to basal levels in about 3–4 h after ingestion (Atherton and 
Smith 2012; Bohe et al. 2001; Dickinson and Rasmussen 
2011; Phillips 2014). Furthermore, old people seem to have 
higher protein needs than young individuals, with values 
around 1.2–1.6 g protein/kg BW/day (Bauer et al. 2013; 
Calvani et al. 2013; Wolfe and Miller 2008, 2008). How-
ever, the data obtained in this area are rather heterogene-
ous. Indeed, in a recent publication by Kim et al. (2015), 
no effect of the protein distribution pattern on the MPS 
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responses was recorded during an entire day. These find-
ings contrast with the results of Mamerow et al. (2014), 
maybe because the population studied was different 
(elderly vs. young/middle age adults) in the two studies. An 
ingestion of 0.4 g/kg/BW of high-quality protein appears to 
be the minimum amount required to stimulate muscle ana-
bolic response (Moore et al. 2015).

When ingested in the context of a mixed meal, it is possi-
ble that a greater amount of high-quality protein is required 
to achieve the maximal MPS, as this condition is associated 
with less amino acids bioavailability (Burke et al. 2012). 
Nevertheless, it still can be recommended to fractionate 
the protein intake during the day, since older people fre-
quently feature a decreased level of appetite (Landi et al. 
2016), a condition that may hamper the consumption of a 
meal with very high protein content, as seem in the study 
by Kim et al. (2015). It is worth noting that the main differ-
ence between the higher vs. lower protein ingestion groups 
was the increased rates of MPS in the higher protein inges-
tion group, a result in accordance with other findings (Bauer 
et al. 2013; Calvani et al. 2013; Wolfe and Miller 2008, 
2008) and which suggests that older individual may benefit 
from higher consumption of protein during the all day.

A recent work (Loenneke et al. 2016) found a positive 
association between protein quantity per meal and leg lean 
mass and strength. In fact, consuming frequent meals con-
taining 30–45 g of protein is associated with greater leg 
lean mass and knee extensor muscle strength. Such nutri-
tional strategy was also associated with higher LBM and 
appendicular LBM in both older men and women at base-
line and after a 2-years follow-up period (Farsijani et al. 
2016). These findings reinforce those provided by Loen-
neke et al. (2016). However, further long-term longitudi-
nal research is required to determine an optimal protein 
intake quantity and distribution throughout the day to help 
to preserve skeletal muscle mass and function in older 
individuals.

The difficulty to reach the optimal value of protein 
intake during the day by the elderly may lead to a protein 
deficit, which chronically may induce skeletal muscle wast-
ing. To counteract this situation, high protein diets com-
bined with high-quality protein supplement may help for 
the preservation of skeletal muscle mass (Cermak et al. 
2012; Deer and Volpi 2015; Malafarina et al. 2013; Wolfe 
2012). To support this proposition, some studies (Geirsdot-
tir et al. 2013; Houston et al. 2008) have found a positive 
correlation between consumption of protein and mainte-
nance of skeletal muscle mass in older adults, since higher 
amounts of protein intake was correlated with an increased 
skeletal muscle mass retention over the time; suggesting a 
possible protective effect of protein against muscle wasting 
when amounts of protein near or even above the recom-
mended values are ingested.

Consumption of whey protein instead of protein meals 
has been proposed as a possible strategy to reach the daily 
requirements of protein able to stimulate MPS in elderly. 
A study performed by Pennings et al. (2012) compared the 
rates of protein accretion after the ingestion of three differ-
ent doses of whey protein (10, 20, 35 g) and showed posi-
tive results for the 20 and 35 g-consuming groups while the 
MPS displayed no significant difference after the ingestion 
of the 10 g protein dose. This result is in agreement with 
the findings from Wall et al. (2015) which suggest that 
higher doses of protein with high biological value at rest 
are necessary to optimally stimulate MPS in older men. It 
may explain why Arnal et al. (1999) and Bouillanne et al. 
(2013) did not find positive results under their experimental 
design. Indeed, Bouillanne et al. (2013) fail to demonstrate 
any benefit from 6 weeks dietary intervention in hospital-
ized older adults, with most meals containing less than 
20 g protein. Similar results were obtained in the study by 
Arnal et al. (1999). Thus, it appears that 20 g protein is the 
minimal amount required to promote MPS in elderly at rest 
(Yang et al. 2012a).

Positive results have been obtained by Tieland et al. 
(2012b) after the intake of the supplement in breakfast and 
lunch of frail elderly. In this latter study, protein intake 
increased to more than 25 g of protein in each main meal 
(≥0.34 g/kg/BW per meal), allowing improvements of both 
strength and physical performance despite no increase in 
skeletal muscle mass after 24 weeks.

In a similar manner, an optimized offer of high-quality 
protein in the breakfast and lunch (all daily meals contain-
ing ≥0.4 g/kg/BW) by protein supplementation promotes 
a significant increase in appendicular lean tissue mass in 
healthy older individuals (Norton et al. 2016). In this latter 
and other studies, the average compliance to the treatment 
was very high (≥92%) (Norton et al. 2016; Tieland et al. 
2012b). In addition, since the protein-induced suppression 
of energy intake may be blunted in the elderly (Giezenaar 
et al. 2015; Norton et al. 2016), this may explain why the 
maintenance of energy balance and consequently of a posi-
tive skeletal muscle protein balance were observed (Car-
bone et al. 2012; Hector et al. 2015; Pasiakos et al. 2015).

Physical activity may also play an import role for the 
maintenance of skeletal muscle mass and function. Resist-
ance training combined with milk protein supplementa-
tion given in the breakfast and lunch of frail elderly gave 
promising results since this combined stimuli increases by 
1.3 kg lean body mass with no differences in the placebo 
group (Tieland et al. (2012a). However, similar to others 
findings (Norton et al. 2016; Tieland et al. 2012b), and as 
pointed out above, there was an increase in the total daily 
protein intake from 1.0 g/kg/BW up to 1.3 g/kg/BW, ren-
dering impossible to attribute these results only to the pro-
tein distribution pattern.
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Yang and colleagues (2012a), by combining resistance 
exercise in older men with post-exercise whey protein 
supplementation, found that different doses of protein, 
i.e., 10 g (0.13 g/kg BW), 20 g (0.25 g/kg BW) and 40 g 
(0.49 g/kg BW) gave positive results. They found that, as 
observed by Pennings et al. (2012) who demonstrated bet-
ter results in MPS with higher doses of protein ingestion 
at rest; 40 g of whey protein intake given after resistance 
training was able to stimulate myofibrillar protein synthe-
sis by 91% above the placebo group; while the group that 
consumes 20 g of whey displayed only 44% increase above 
the value obtained in volunteers without supplementation. 
In agreement, D’Souza et al. (2014) found a linear rela-
tionship between whey protein dose and muscle p70S6k 
phosphorylation, wherein 40 g of protein intake results in 
greater levels of p70S6k phosphorylation than lower pro-
tein doses. Phosphorylation of p70S6k is often correlated 
to increases in MPS rates and possible muscle hypertro-
phy (Baar and Esser 1999; Mitchell et al. 2013; Terzis 
et al. 2008). Although, other mechanisms are likely to be 
also involved in the skeletal muscle hypertrophy. In fact, 
in some cases there is a lack of correlation between acute 
changes in phosphorylation of p70S6k and long-term skel-
etal muscle hypertrophy (Mitchell et al. 2012, 2014). These 
findings provide an important information suggesting that 
older people have higher need for high-quality protein to 
optimize the stimuli of muscle protein synthesis at rest and 
after resistance exercise.

In agreement with these results, a recently published 
randomized, double-blind, placebo-controlled supplemen-
tation trial (Rondanelli et al. 2016) that combined whey 
protein, essential amino acids, and vitamin D with regu-
lar physical activity in 130 sarcopenic elderly people (53 
men and 77 women; mean age 80.3 years) showed positive 
results of the dietary intervention. After 12 weeks of inter-
vention with physical activity 5 times/week and ingestion 
of 32 g of a supplement containing 22 g of whey protein 
(~4 g of leucine) and 2.5 g of vitamin D one time per day, 
68% of the sarcopenic elderly became non-sarcopenic with 
a gain of ~1.7 kg in fat free mass. These results were con-
comitant with others improvements in health parameters, 
such as reduced inflammatory state, increased performance 
on activities of daily living, and enhanced IGF-1 concentra-
tions. These results suggest that physical activity is impor-
tant, but alone is not sufficient, to achieve significant results 
since placebo group did not present all these improve-
ments. However, the physical activity was non intensive in 
this latter study, suggesting that it could have been a limit-
ing factor for the increase in fat free mass. Furthermore, it 
is important to notice that despite the relatively low dose 
of whey protein used (22 g), the high content of these pro-
tein in leucine and the vitamin D supplementation might 
explain the positive and ample results of the study.

Current evidence suggests that performing exercise 
before protein intake allows greater use of dietary protein-
derived amino acids for de novo muscle protein synthesis 
in elderly men (Pennings et al. 2011b). Thus, based on 
these data, physical activity positively impacts the ability of 
skeletal muscle to retain dietary amino acids, in both young 
and old individuals, and improves the anabolic response of 
a meal containing protein (Devries et al. 2015; Timmerman 
et al. 2012; Walker et al. 2011). A bout of moderate inten-
sity aerobic exercise seems to be efficient to sensitize the 
skeletal muscle and enhances the anabolic effects of protein 
feeding (Timmerman et al. 2012). Although the enhanced 
sensitivity of MPS after an intense bout of resistance exer-
cise persists up to 24 h (Damas et al. 2015), the greatest 
exercise-mediated increases in MPS occurs immediately 
after the exercise bout (Churchward-Venne et al. 2012). 
Thus, providing frequent daily stimulus such as walking to 
enhance MPS may be valuable for the elderly to maintain 
the maximal skeletal muscle response to protein-induced 
increases in MPS during the day.

Due to anabolic resistance, as defined above, an impor-
tant issue that thus appears determinant for the stimulation 
of skeletal muscle protein synthesis is the protein source. 
Indeed, there are different types of dietary proteins with 
different characteristics, such as the digestibility, amino 
acids composition, and rates and kinetics of absorption of 
these AAs. Such parameters would likely lead to distinct 
MPS responses. Data provided by Yang et al. (2012b) com-
pared the MPS responses after intake of different protein 
sources in the elderly. These authors assessed the effects 
of whey protein and soy protein ingestion under rest and 
post-exercise conditions. They compared three different 
doses of protein supplementation, that are 0, 20 and 40 g 
of whey protein or soy protein on the rates of leucine oxi-
dation and fractional synthesis rates (FSR). The results 
pointed to higher increases in FSR in both rested and after 
resistance exercise using whey in comparison with soy pro-
tein, despite lower rates of leucine oxidation when small 
doses of protein were ingested. Similar results were found 
by Mitchell et al. (2015a), which showed a less prolonged 
p70S6k phosphorylation after soy protein ingestion (~2 h) 
compared to whey protein (~4 h) after a session of resist-
ance exercise.

Whey protein also seems to be more effective to increase 
the rates of MPS when compared with casein. A study per-
formed by Burd et al. (2012) revealed that the ingestion 
of whey protein elicited greater rates of MPS against its 
casein counterpart in older adults. It is important to notice 
that this latter study also tested the subjects at rest and after 
resistance training, and found, in both conditions, whey 
to give better results than casein. This result is probably 
related to a greater hyperaminoacidemia or hyperleucine-
mia after whey ingestion, due to the kinetic of digestion 
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of each protein. Findings from Pennings et al. (2011a, b) 
is in accordance with these results, as greater circulating 
concentrations of leucine were measured after whey inges-
tion compared with casein ingestion. Moreover, high leu-
cine plasma concentrations combined with peak leucinemia 
resulting from whey supplementation displayed a strong 
relationship with MPS (Pennings et al. 2011a, b). Walrand 
et al. (2016) recently compared in the elderly the rates of 
synthesis in individual muscle protein fraction—sarco-
plasmic, mitochondrial, actin and myosin—after the intake 
of casein and a fast-digestive milk protein with different 
amounts of leucine. The consumption of both 15 and 30 g 
of the fast-digestive milk protein was able to increase mito-
chondrial protein FSR, while no difference was elicited 
in the postprandial period after casein ingestion, suggest-
ing that each protein source has an unique effect at specific 
muscle protein fractions.

However, although myosin protein FSR was stimulated 
after both protein sources, myosin FSR was enhanced with 
30 g but not with 15 g of casein. Sarcoplasmic muscle pro-
tein and actin FSRs were not significantly increased in the 
postprandial state compared to the postabsorptive state. It 
is worth to note that the availability of plasma leucine was 
higher for both 15 and 30 g of fast-digestive milk protein, 
despite 30 g of casein contain larger amounts of leucine 
than 15 g of rapidly digested milk protein.

These results point to a better response of MPS after 
whey ingestion despite the fact that casein (only when 
hydrolyzed) and soy protein also display fast digestibility, 
high bioavailability, and high EAAs content. Whey pro-
tein consumption results in a higher concentrations of leu-
cine and promotes an overall rapid increase of amino acid 
concentrations in plasma. Such increase apparently is the 
“trigger” to start the cell signaling process allowing pro-
tein synthesis (Katsanos et al. 2006; Layman et al. 2015; 
Volpi et al. 2003; West et al. 2011). Concomitantly, the 
role of each source of protein in the human metabolism 
may contribute to the differences in the MPS stimulation 
after the ingestion of a given mixture of nutrients. Indeed, 
for instance, amino acid derived from whey protein in 
milk or from soy protein can be used differently both in 

the splanchnic and peripheral tissues. Amino acids derived 
from soy protein seems to support greater splanchnic 
protein synthesis and to be converted to urea to a greater 
extent than milk proteins. This may be due to the high con-
tent of BCAAs in whey protein, since it contributes to less 
splanchnic extraction (Bos et al. 2003; Fouillet et al. 2002; 
Luiking et al. 2005). These different metabolic fates may 
explain, in part at least, the superiority of milk protein to 
rise MPS compared to soy protein (Hartman et al. 2007; 
Wilkinson et al. 2007).

Without consideration regarding the different dietary 
sources, high quantities of protein may be efficient to stim-
ulate MPS above basal rates when combined with resist-
ance training in elderly. Some studies have demonstrated 
that 40 g of beef meat, whey and soy protein, were able to 
raise MPS around 80–100% after resistance training. How-
ever, low doses (~10 g) were unable to increase the protein 
accretion (Robinson et al. 2013; Yang et al. 2012a, b).

However, in contrast to the findings above, two recently 
published data in both young individuals (Mitchell et al. 
2015b) and in the elderly (Mitchell et al. 2015c) suggest 
that a sustained EAA delivery profile (pulse feeding) may 
be as good as a rapid rise of aminoacidemia (bolus feeding) 
to stimulate MPS at rest. More studies applying this latter 
strategy are needed to explore potential clinical benefits of 
such a strategy for the elderly.

Taken together, these findings show that most elderly 
people do not reach the necessary amounts of protein to 
counteract the anabolic resistance and to attenuate the sub-
sequent sarcopenia. A strategy that seems to be useful to 
help old people to ingest their protein daily requirements 
is through protein supplementation, mainly in the form 
of whey protein due to their relatively high EAAs con-
tent (notably with high amounts of leucine), fast and high 
digestibility and good bioavailability. All these characteris-
tics are propitious to promote a rapid and robust rise in leu-
cinemia, likely allowing high rates of MPS. Thus, provid-
ing three or more high-quality, leucine-rich protein meals 
during the day combined with regular physical activity may 
represent a good strategy to attenuate aging-related skeletal 
muscle mass losses (Fig. 1).

Fig. 1  Schematic view showing 
how the key variables of protein 
ingestion and physical activ-
ity can influence the skeletal 
muscle mass in the elderly. MPS 
muscle protein synthesis, MPB 
muscle protein breakdown
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High protein diet and renal impairment

The high protein intake leads to oxidation of the amino acids 
in excess and possible metabolism in triglycerides and glu-
cose. Excessive protein intake results in an elevated nitrogen 
rates in the body, which leads to a greater glomerular filtra-
tion rate, and increases the production of urea (Marckmann 
et al. 2015; Poortmans et al. 2012). There was no effect of 
a high protein intake on renal function, such as glomerular 
filtration, excretion of albumin and calcium metabolism in 
trained athletes consuming less than 2.8 g/kgBW per day of 
protein (Poortmans and Dellalieux 2000). In another study, 
the renal function was examined by the measurement of 
the glomerular filtration rate, after 12 weeks of interven-
tion with resistance training and protein supplementation 
in elderly. The results showed no impairment of glomerular 
filtration rate with a protein consumption of approximately 
1.0 g/kgBW (Ramel et al. 2013).

The current recommendation suggests a moderate/
restricted protein consumption, mainly in the elderly, only 
in the presence of a moderate/severe kidney disease with no 
dialysis (Bauer et al. 2013).

High‑protein diet and colon health

An increase in the amount of dietary protein intake increases 
the quantity of unabsorbed proteins, peptides and amino 
acids reaching the large intestine through the ileocecal 
junction (Gibson et al. 1976). In the small and large intes-
tines, bacteria in the luminal contents can metabolize pro-
teins and amino acids (Dai et al. 2012; Blachier et al. 2010; 
Andriamihaja et al. 2013); and metabolomics analysis has 
revealed different profiles in the plasma and urine of rodents 
receiving a high-protein diet as compared to diet contain-
ing a moderate amount of proteins (Mu et al. 2015). In the 
large intestine, undigested and partially digested dietary 
protein and peptides from dietary and endogenous origin are 
degraded by endogenous and bacterial proteases/peptidases 
in peptides and amino acids; these latter being not absorbed 
by the colonic epithelium but serving as precursors for 
numerous bacterial metabolites including ammonia, hydro-
gen sulfide, amines, short-chain and branched-chain fatty 
acids, indoles, phenols, ethanol and organic acids, etc. (Liu 
et al. 2014; Mouillé et al. 2004; Davila et al. 2013). Sev-
eral among these metabolites (H2S, NH4

+, p-cresol) have 
been shown at excessive concentrations to affect colonic 
epithelial energy metabolism (Beamount et al. 2016; Andri-
amihaja et al. 2010, 2015). p-Cresol which is produced by 
the microbiota from l-tyrosine shows genotoxic effect on 
colonocytes (Andriamihaja et al. 2015). In addition, hydro-
gen sulfide has been recently shown to drive mucin dena-
turation, and to presumably reduce mucus barrier function 

in the colon (Ijssennagger et al. 2015). High-protein diet 
given for 2 weeks has been shown to modify colonic epithe-
lial cell morphology (Andriamihaja et al. 2010) and to affect 
the distribution of mucous cells in the colonic epithelium 
(Lan et al. 2015), maybe due to alteration in the process 
of colonic epithelial cell proliferation and differentiation. 
These results were all obtained in animal models. In human 
studies, it has been shown that high protein weight loss diet 
promotes in the colonic lumen a bacterial metabolite pro-
file that is likely detrimental for colonic health (Russell 
et al. 2011); suggesting that long-term adherence to such 
diet may increase risk of colonic diseases. Since there is no 
upper limit for protein intake with no adverse effects, some 
caution is advised regarding long-term consumption of high 
protein diet particularly regarding the maintenance of the 
colonic health.

Conclusions

From the available data, it appears necessary in the elderly 
population to examine each case individually to determine 
the actual relevance for protein dietary supplementation. 
Furthermore, one must take into account the origin of the 
substances that will be used for supplementation, as well as 
the safety for use and evidence of its effectiveness.

A key point regarding the effectiveness of protein sup-
plementation is the combination of training, food intake 
and supplementation. Considering that muscle hypertrophy 
is only due to protein supplementation has simply no scien-
tific support. Several studies showed some positive results 
on the association of physical exercise together with sup-
plementation of whey protein, especially for audiences like 
the elderly who may experience protein deficit. It is worth 
to note that protein sources with high biological value con-
taining essential amino acids (notably leucine), such as 
whey protein, but of course not exclusively, are most rel-
evant to generate the appropriate stimulus for protein syn-
thesis. The Table 1 presents a list of studies related to the 
effects of dietary protein supplementation in the elderly.

Regarding the recommended dose, an adequate protein 
intake from 1.2 up to 1.6 g/kg/BW during the day may 
be required by the elderly to preserve muscle mass. Frac-
tionate protein intake in daily doses may likely be a good 
strategy since older individuals may experience diminished 
appetite. Therefore, an individualized nutritional strategy 
should always be designed to successfully reach the recom-
mended daily protein needs. However, since the upper non 
deleterious level of dietary protein remains undefined, and 
taking into consideration that high protein diet in long-term 
utilization may impact colon health, some additional stud-
ies are required to test in healthy volunteers the impact of 
high-protein diet on the large intestine epithelium. In that 
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regard, supplementation with individual amino acids may 
represent on some occasions an interesting strategy, tak-
ing into account the large capacity of the small intestine for 
their absorption.
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