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Substantial evidence has been accumulated suggesting that branched-chain amino acid (BCAA) supplementation or BCAA-rich
diets have a positive effect on the regulation of body weight, muscle protein synthesis, glucose homeostasis, the ageing process
and extend healthspan. Despite these beneficial effects, epidemiological studies have shown that BCAA plasma concentrations
and BCAAmetabolism are altered in several metabolic disorders, including type 2 diabetes mellitus and cardiovascular diseases. In
this review article, we present an overview of the current literature on the different effects of BCAAs in health and disease. We
also highlight the results showing the most promising therapeutic effects of dietary BCAA supplementation and discuss how
BCAAs can trigger different and even opposite effects, depending on the catabolic and anabolic states of the organisms. More-
over, we consider the effects of BCAAs when metabolism is abnormal, in the presence of a mixture of different anabolic and
catabolic signals. These unique pharmacodynamic properties may partially explain some of the markedly different effects found in
BCAA supplementation studies. To predict accurately these effects, the overall catabolic/anabolic status of patients should be
carefully considered. In wider terms, a correct modulation of metabolic disorders would make nutraceutical interventions with
BCAAs more effective.
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Introduction
Branched-chain amino acids (BCAAs), that is isoleucine, leu-
cine and valine, are proteinogenic essential amino acids
(EAAs) with aliphatic-branched side chains. In addition to
their role as key building blocks for peptide synthesis, BCAAs
are also important sources for the biosynthesis of sterol, ke-
tone bodies and glucose. They account for about 21% of the
total body protein content and 35% of the dietary essential
amino acids in muscle proteins (Harper et al., 1984). The free
BCAA pool not bound to a peptide chain accounts for an ex-
tremely small proportion (272 to 556-fold less) of the body’s
total mass of BCAAs (Waterlow et al., 1978). Nevertheless,
free BCAAs act as important nutrient signals and metabolic
regulators. Skeletal muscle contains the largest amount of free
BCAAs, corresponding to ~0.1 g kg�1 muscle (Shimomura
et al., 2006).

Given their hydrophobic nature, BCAAs are involved in
the formation of α-helices and β-sheets, secondary structural
motifs of proteins. Therefore, they are present in a variety of
coiled-coil α-helices of proteins such as myosin, fibrinogen
and keratin. BCAAs form the helical zipper structures of
transcription factors (Chou and Fasman, 1978; Glover and
Harrison, 1995). Moreover, BCAAs are present in most of the
non-aqueous interior environment of water-soluble globular
proteins, such as the oxygen-binding portion of myoglobin
and haemoglobin (Chou and Fasman, 1973).

Branched-chain amino acid
pharmacokinetics
Skeletal muscles represent the largest protein pool and reser-
voir of BCAAs in the body. Although the molecular basis
and the regulation of BCAA uptake remain poorly studied,
L-type amino-acid transporters and bidirectional transporters
for L-glutamine and L-leucine/EAAs in the enterocytes of
proximal jejunum play amajor role in the transport of BCAAs

and activation of downstream signalling (Broer, 2008).
BCAAs enter the blood circulation by absorption, largely es-
cape the first-pass hepatic metabolism and appear directly
in the systemic circulation (Brosnan and Brosnan, 2006).
About 95–99% of all circulating BCAAs are reabsorbed in
the kidney nephrons, largely through the proximal convo-
luted tubules (Broer, 2008). Measurements of the arteriove-
nous exchanges have shown that muscles and the
splanchnic bed extract over half and about one quarter of
the circulating BCAAs, respectively, while the remainder is re-
moved by the brain and other tissues (Fernstrom, 2005). Both
plasma and cerebrospinal BCAA levels are rapidly elevated af-
ter ingestion of a BCAA-containing meal, and brain access to
BCAAs is mediated by facilitative transport, which involves
both saturable and unsaturable processes (Smith et al., 1987).

Catabolism
BCAA catabolism is highly regulated by both allosteric and
covalent mechanisms (Harris et al., 2005). This may occur
not only because BCAAs are EAAs, obtained exclusively from
external food sources, but also because they are the major
regulators of protein synthesis, particularly leucine. The true
biochemical reasons of the tight control of BCAA catabolism
remain, however, largely unknown. The first steps in their
catabolism are common to the three BCAAs and require
the mitochondrial enzymes BCAA aminotransferase (BCAT)
and branched-chain α-keto acid dehydrogenase complex
(BCKDC). Remarkably in contrast with other amino acids,
only a relatively small fraction of BCAA catabolism capacity
resides in the liver. Most of the BCAA catabolism is indeed lo-
cated in skeletal muscle and the brain, whereas a considerable
proportion also resides in white adipose tissue (WAT)
(Suryawan et al., 1998; Herman et al., 2010). In the first and
fully reversible step of degradation, mitochondrial BCAT
transfers the amino group from BCAAs to α-ketoglutarate to
form the corresponding branched-chain α-keto acids (BCKAs)
and glutamate. Thereafter, BCKDC catalyses the decarboxyl-
ation of the carboxyl groups of BCKAs, to form the
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corresponding branched-chain acyl-CoA esters. This reaction
is irreversible and, therefore, commits the BCAAs to degrada-
tion (Brosnan and Brosnan, 2006).

Recent findings have shown that this step is an important
site of regulation (Lu et al., 2009). BCKDC activity
is regulated by end-product allosteric inhibition by NADH,
α-ketoisocaproate and branched-chain acyl-CoA esters, and
can also be inhibited by phosphorylation and activated by
dephosphorylation. The BCKD complex is genetically similar
to the pyruvate dehydrogenase complex (PDH), with similar
subunit composition and regulatory mechanisms. Like PDH,
BCKDC activity is determined by the phosphorylation status
of its regulatory subunit E1a. When the BCAA level is low, E1a
is hyper-phosphorylated by a BCKD kinase, leading to inhibi-
tion of BCKDC activity and preservation of free BCAA. When
the BCAA level is high, E1a is dephosphorylated by a
mitochondrial-targeted 2C-type Ser/Thr protein phosphatase
(PP2Cm) named PP2C in mitochondria or protein phospha-
tase, Mg2+/Mn2+ dependent 1K (PPM1K), leading to BCKDC
activation and a reduction in total BCAAs (Lu et al., 2009).

BCKAs undergo further catabolic degradation to different
end products, such as glucose and/or ketone bodies. In
particular, leucine is a ketogenic amino acid, while valine is
a gluconeogenic amino acid and isoleucine is both a

gluconeogenic and ketogenic amino acid. However, muscles
are not a gluconeogenic tissue; therefore, if valine and
isoleucine are to be converted to glucose, they cannot be
completely metabolized in this tissue. Accordingly, the inter-
mediate valine metabolite 3-hydroxyisobutyrate (3-HIB),
which lacks the covalent linkage to CoA, exits frommyocytes
and acts as a gluconeogenic substrate in both hepatocytes
and renal cortical tubular cells (Letto et al., 1986). Interest-
ingly, a novel inter-organ communication property of 3-HIB
has been recently described as a paracrine regulator of trans-
endothelial fatty acid transport that promotes lipid accumu-
lation in diabetic muscle (Jang et al., 2016).

Branched-chain amino acid
pharmacodynamics

Mechanism of action
BCAAs are evolutionary conserved essential components of
the diet. BCAAmetabolism can be directed either to catabolic
(i.e. oxidation) or anabolic (i.e. protein synthesis) fate by sig-
nals initiated by specific cellular energy/nutrient sensors
(Figure 1). In the case of starvation, autonomic activation,

Figure 1
Mechanisms of action of branch-chained amino acids (BCAAs). As energy substrate (orange box) BCAAs can be directed either to oxidation
(through AMPK signalling in catabolic conditions) or to protein synthesis (through mTOR signalling in anabolic conditions). BCAAs act as
nutrient signals to specific nutrient-sensing systems (purple box). In particular, they may interact mostly with the general amino acid control
non-derepressible 2 (GCN2) pathway, specific leucyl-tRNA synthetase and Sestrin2. Leucine inhibits the Sestrin2-GATOR2 interaction and allows
GATOR2 to activate mTOR signalling. BCAAs function also as nutrient modulators (blue box), by fine-tuning the secretion of nutrient-related hor-
mones, such as leptin, adiponectin, GLP-1 and pro-opiomelanocortin (POMC). BCAAs increase the expression of PGC-1α and sirtuin 1(Sirt1), thus
promoting mitochondrial biogenesis (green box), partly through eNOS activity.
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glucagon, adrenaline, noradrenaline, cortisol and growth
hormone increase intracellular BCAA uptake and favour
BCAA oxidation. At the cellular level, the molecular events
underlying these signals are mainly regulated by AMP
activated kinase (AMPK), a master sensor of energy balance
(Yuan et al., 2013). In turn, high levels of amino acids are ac-
tivated, through the Rag guanosine triphosphatases
(GTPases), the mammalian/mechanistic target of rapamycin
complex 1 (mTORC1) (Yuan et al., 2013). This multiprotein
complex acts at different levels, cooperates with other ana-
bolic hormones [insulin and insulin-like growth factor 1
(IGF1)] to increase the intracellular BCAA uptake, promotes
protein synthesis, reduces protein degradation and increases
cell growth (Rennie et al., 2006). Intracellular BCAAs can
synthesize new proteins, but can also be converted to
glutamate, which detoxifies ammonia via glutamine synthe-
sis in skeletal muscle (Kawaguchi et al., 2011). Importantly,
in catabolic states, BCAAs are normally oxidized to generate
ATP. Carbon originating from leucine enters the tricarboxylic
acid (TCA) cycle as acetyl-CoA for complete disposal as CO2,
whereas isoleucine and valine mainly provide carbon for
anaplerotic conversion of propionyl-CoA to succinyl-CoA
(Harris et al., 2005).

Nutrient signals
Whole body protein synthesis in humans (measured as g kg�1

of body weight day�1) drastically decreases with age, being
17.4 in new-borns, 6.9 in infants, 3.0 in adults and 1.9 in el-
derly subjects. Similarly, protein catabolism also decreases
with age. It has been estimated that in conditions of dietary
nitrogen balance, the adult protein turnover (i.e. synthesis
and degradation processes) accounts for 250 g day�1

(Waterlow et al., 1978). These parameters can largely change
in conditions of nutrient deprivation and in disease states,
for example in traumatized or septic subjects.

Cellular organisms have evolutionary conserved
multiprotein complexes able to sense energy and nutrient
levels, including BCAAs, and to coordinate a network of
signalling cascades for cell growth (anabolism) or energy pro-
duction (catabolism). Amino acid- and BCAA-specific sensing
systems seem to be redundant and act at different cellular lo-
calizations (Wolfson et al., 2016). Intracellular amino acids
interact with the general amino acid control non-
derepressible 2 (GCN2) pathway. GCN2 senses the uncharged
transfer RNAs (tRNAs) that accumulate when the amino acid
concentration is low (Wek et al., 1995). Activated GCN2
decreases the translation of amino acids, reducing their con-
sumption and the energy required for this process (Figure 1).
Moreover, specific leucyl-tRNA synthetase has been revealed
as an intracellular leucine sensor in both yeast and mammals
that is able to activate the mTORC1-signalling pathway, but
does not affect the AMPK pathway (Han et al., 2012). In the
presence of leucine, leucyl-tRNA synthetase translocates to
the lysosome where it increases, in a dose-dependent man-
ner, the GTP hydrolysis of RagD required for mTORC1 acti-
vation (Figure 1). Furthermore, leucine, but not arginine,
binds to Sestrin2, a known mTORC1 signalling inhibitor
that acts on the mTORC1-activator GAP activity towards
rags 2 (GATOR2) (Saxton et al., 2016; Wolfson et al., 2016).
Leucine concentrations able to activate mTORC1 can bind
to Sestrin2, thus inhibiting the Sestrin2-GATOR2 interaction

and allowing GATOR2 to regulate positively mTOR activa-
tion (Figure 1). Interestingly, since Sestrin2 is a soluble pro-
tein, this leucine-sensor system can sense the free leucine
in the cytosol.

Brain leucine rapidly and strongly activates mTOR signal-
ing and its downstream target p70 S6 kinase, within two sites
adjacent to circumventricular organs, which have preferen-
tial access to blood borne nutrients (Cota et al., 2006). The
leucine sensing structures are located in the mediobasal hy-
pothalamus (including the arcuate and ventromedial nuclei)
and the dorsal vagal complex of the caudal brainstem (includ-
ing the nucleus of the solitary tract, the dorsal motor vagus
and the area postrema). In these brain areas, leucine induces
neurons to express the anorexigenic proopiomelanocortin
(POMC) that reduces feeding and body weight gain (McAllan
et al., 2013) (Figure 1).

Nutrient sensors
BCAAs have been found to increase the secretion of nutrient-
related hormones. Single EAAs have been infused in humans
to determine their effects on plasma insulin. Arginine, lysine,
phenylalanine and leucine resulted in the highest increases
in plasma insulin levels, although of all of them arginine
seems to be the most important (Floyd et al., 1966). Interest-
ingly, only the BCAAs were able to concurrently inhibit gluca-
gon secretion (Nair and Short, 2005), while leucine has been
shown to increase the secretion of leptin (Lynch et al.,
2006) and adiponectin from adipocytes (Blumer et al., 2008)
(Figure 1). In obese mice, leucine supplementation, together
with physical exercise, was found to increase adiponectin
concentrations while reducing pro-inflammatory adipokines
(Torres-Leal et al., 2011). BCAAs have been shown to
induce a dose-dependent increase in glucagon-like peptide-1
(GLP-1) release from enterocytes in vitro (Chen and Reimer,
2009); however, this effect has not been confirmed in vivo
(Steinert et al., 2015). Furthermore, a valine-rich amino-acid
mixture (Colombel et al., 1988) or leucine alone (Steinert
et al., 2015) directly infused into duodenum can increase cho-
lecystokinin production and gallbladder contraction.

Effects on skeletal muscle
Circulating BCAAs, in particular leucine, have been shown to
act as potent nutrient signals in muscle where they induce
protein synthesis (Shimomura et al., 2006). A dietary supple-
mentation of amino-acid mixtures enriched in BCAAs
(BCAAem) preserves muscle fibre size and improves physical
endurance and motor coordination in middle-aged mice
(D’Antona et al., 2010). Moreover, BCAAem increases the ex-
pression of PPARγ coactivator-1α (PGC-1α) and sirtuin 1
(SIRT1) and promotes mitochondrial biogenesis and function
in cardiac and skeletal muscles through an mTORC1-
dependent effect (D’Antona et al., 2010). BCAAem-activated
mTOR signalling can enhance mitochondrial biogenesis par-
tially through increasing of the NO generating system. Endo-
thelial NOS (eNOS) gene silencing decreased the activation of
mTOR by BCAAem in vitro and in vivo (D’Antona et al., 2010).
Thus, a positive feedback mechanism between eNOS and
mTOR pathways could promote the effects of BCAAs. Finally,
exercise training further enhanced the BCAAem-mediated
improvement in muscle functional capacity.

Branched-chain amino acids in health and disease BJP

British Journal of Pharmacology (2017) 174 1366–1377 1369



Effects on the immune system
The link between metabolism and immunity has been clearly
established from an evolutionary point of view. In fact, the
functions of adipose tissue and bone marrow, specialized or-
gans that regulate lipid stores and immune cell production
in mammals, are sustained by a single organ in Drosophila,
the fat body (Hotamisligil and Erbay, 2008). The activation
of immune responses is a metabolically demanding process.
It has been estimated that sepsis can increase the human
metabolic rate by 30–60% and nitrogen excretion by two to
threefold (Romanyukha et al., 2006). Catabolic states such
as starvation and malnutrition can actually impair the
functions of the immune system, but, on the other hand,
most infections suppress the host’s appetite, possibly by
inducing the synthesis of leptin (Demas et al., 2003). Two
crucial cell types of the immune and metabolic systems,
macrophages and adipocytes, share similar functions and
properties as far as they both secrete cytokines and can be ac-
tivated by lipopolysaccharide. Nutrients may directly induce
inflammation through activation of toll-like receptor signal-
ling by free fatty acids (Konner and Bruning, 2011). Among
the better characterized intracellular points of crosstalk be-
tween nutrient sensing multiprotein complexes (i.e. AMPK,
mTOR), anabolic hormones, inflammatory pathways, IκB
kinase-α and JNK play important roles (Lee et al., 2007). The
anti-inflammatory cytokine IL-22 is able to regulate oxidative
stress pathways and increase mouse and human insulin secre-
tion from beta cells of the pancreas (Hasnain et al., 2014).

Protein malnutrition is one of the major causes of
decreased immune function in the elderly (Lesourd, 1995).
Although glutamine has been considered the most important
amino acid for immune function (Roth, 2008), human
immune cells express BCKDC and decarboxylase activities
(Calder, 2006) and, thus, oxidize BCAAs. The BCAA uptake
rate in lymphocytes varies according to the cell cycle phase,
most likely reflecting the timing of protein synthetic activity
(Glassy and Furlong, 1981). Moreover, dietary restriction of
BCAAs impairs different aspects of the immune function,
including the activity of cytotoxic T lymphocytes, natural
killer cells and lymphocyte proliferation. The BCAA supple-
mentation partially restored the immunosuppression occur-
ring after intense long-duration exercise (Bassit et al., 2002).

BCAA supplementation reduces by 30% the incidence of
infections acquired in geriatric long-term rehabilitation cen-
tres (Aquilani et al., 2011). Moreover, BCAAs can reduce the
risk of bacterial and viral infection in patients with decom-
pensated cirrhosis by restoring the impaired innate immune
responses of these patients (Nakamura et al., 2004, 2007).
Furthermore, the BCAA supplementation in haemodialysis
patients on low-protein diet has been found to be associated
with a reduction in inflammatory markers and correction of
nephropathy-linked anaemia (Bolasco et al., 2011).

Effects on brain
BCAAs compete for large, neutral amino-acid transport at the
blood–brain barrier and can influence brain neurotransmitter
synthesis (Fernstrom, 2005). Ingestion of BCAAs causes a
rapid elevation of their plasma concentrations, increases
their uptake into the brain and decreases the brain uptake
and level of the aromatic amino acids tryptophan,

phenylalanine and tyrosine. This interaction may interfere
with the synthesis of the amine neurotransmitters 5-HT,
and the catecholamines dopamine and noradrenaline.
Experimental studies show that BCAAs have favourable ef-
fects on cognitive functions. BCAA supplementation has
been reported to improve cognitive performance in active
dogs, with greater benefit to senior dogs (Fretwell et al.,
2006). BCAA transamination plays an essential role in the
synthesis of glutamate and subsequently of GABA. Mice sub-
jected to traumatic brain injury had a significant reduction in
BCAA concentration and neurotransmitter changes in the
hippocampus (Cole et al., 2010). Dietary delivery of BCAAs
to brain-injured mice restored hippocampal BCAA levels,
synaptic glutamate and GABA pools, and net synaptic effi-
cacy, and eradicated injury-induced cognitive impairments
(Cole et al., 2010). Parenteral supplementation of BCAAs
was shown to enhance the cognitive recovery of patients
with traumatic brain injury (Aquilani et al., 2005), even when
in a vegetative or minimally conscious state (Aquilani et al.,
2008). BCAAs were administered to bipolar subjects during
periods of mania for 7 days and produced a significant reduc-
tion in manic symptoms, possibly reducing brain tyrosine
and phenylalanine uptake and, thus, catecholamine synthe-
sis (Fernstrom, 2005).

Therapeutic windows and adverse
effects
The recommended dietary allowance (RDA) of BCAAs is
19 mg kg�1 day�1 of isoleucine, 42 mg kg�1 day�1 of leucine
and 24 mg kg�1 day�1 of valine. In humans, the daily BCAA
requirement is estimated to be in a range between 10.3 and
22% required for the maintenance protein (Kamin, 1985).
Extremely elevated blood concentrations of BCAAs
(leucine greater than 1000 μmol L�1), as in the maple syrup
urine disease, causes, within a few hours, a severe clinical
condition that includes anorexia, vomiting, dehydration,
lethargy, hypotonia, seizures, hypoglycaemia, ketoacidosis,
pancreatitis, coma and cerebral oedema (Strauss et al., 1993).

BCAAs or leucine alone have been administered to
humans in a variety of studies. The amounts of the BCAAs
administered were typically double to triple the normal
turnover of the BCAAs (Matthews, 2005). The administration
periods ranged from hours to months. None of these studies
reported any untoward effects of BCAA administration
(Kamin, 1985). However, both BCAA and/or leucine adminis-
tration significantly reduced the plasma concentration of sev-
eral essential amino acids (Shimomura et al., 2006). This
effect has been identified predominantly in muscle tissue
(Shimomura et al., 2006). Both infusion of the BCAAs at three
times the basal flux and dietary intake at six times the normal
flux did not have any adverse effects. There are no reports of
side effects associated with normal diets containing BCAAs
nor with healthy subjects receiving single, infused supple-
mental BCAA doses as high as 9.75 g (Kamin, 1985).

The tolerable upper intake level of leucine, in bothhealthy
young (20–35 years) and elderly (72.2 ± 3.5 years) subjects, has
been shown to be similar at a dose of 500 mg kg�1 day�1 or
~35 g day�1 for an individual weighing 70 kg (Elango et al.,
2012; Rasmussen et al., 2016). In a dose-ranging study in
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normal volunteers, ingestion of 60 g BCAAs was well- toler-
ated and markedly raised the BCAA plasma concentration
300 min after administration (leucine went up to about
2000 nmol mL�1). The same BCAA dose was administered
to bipolar subjects during periods of mania for 7 days and
ameliorated their symptoms, without any side effects
(Fernstrom, 2005).

BCAAs in pregnancy
The RDA of proteins in pregnancy increases by 24%. Dietary
supplementation with an individual BCAA (2 g kg�1 day�1)
in pregnant rats fed a low-protein diet (6% casein) reduces fe-
tal body weight and relative brain weights (Matsueda and
Niiyama, 1982). When BCAA supplementation (2250 mg-
kg�1 day�1) was given 2 weeks before mating and continued
through three generations, pup brain weights were reduced
starting from the second generation (Thoemke and Huether,
1984). Moreover, concentrations of aspartate decreased in
the brain of these animals, although the dose–response effect
was not considered.

BCAAs and cancer
Leucine and isoleucine have been shown to promote
bladder neoplasms originated by the oncogenic agent N-bu-
tyl-N-(4-hydroxybutyl) nitrosamine in rats at dietary levels
of 2% and above (Nishio et al., 1986). However, there is no ev-
idence that either of these amino acids could possibly be car-
cinogenic in the absence of an initiating agent, and no
dose–response studies have actually identified any effective
BCAA carcinogenic concentration. Positron emission tomog-
raphy with 11C–leucine points to the high avidity of amino
acid uptake of some tumours (Smith et al., 2005). On the
other hand, BCAA supplementation improved the metabolic
parameters, morbidity and quality of life in patients with he-
patocellular carcinoma (Kawaguchi et al., 2011). The few data
available on BCAAs in the tumour-bearing state are not con-
clusive, and further work is needed to clarify the effects of
BCAAs on cancer (Baracos and Mackenzie, 2006).

BCAAs and amyotrophic lateral sclerosis
Some epidemiological studies have correlated BCAA supple-
mentation with a higher incidence of amyotrophic lateral
sclerosis (ALS) among professional football players (Chio
et al., 2005). Certain studies have shown that this effect could
possibly be associated with BCAA-induced hyperexcitability
of the cortical motoneurons. In contrast, BCAA supplementa-
tion was given to ALS patients with the idea that BCAAs could
activate the glutamate dehydrogenase enzyme, hence in-
crease the catabolism of glutamate and reducing its harmful
levels in the brain. A meta-analysis concluded that BCAAs ac-
tually did not change the course of ALS (Parton et al., 2003).
Although, to date, no scientific studies have clearly
demonstrated that ALS is a direct consequence of BCAA sup-
plementation, giving the popular usage of BCAAs among
sportsman this risk should be taken into consideration.
Pharmacovigilance studies assessing the risk of ALS incidence
among cohorts of sportsman using BCAA supplementation
are thus needed.

Branched-chain amino acid
supplementation as effective therapy of
different disorders
Based on their mechanisms of action, BCAA mixtures have
been successfully used in many disease conditions character-
ized by a catabolic state, including muscle sarcopenia, burn
and trauma (De Bandt and Cynober, 2006). Long-term sup-
plementation of a specific BCAA-enriched formula has been
found to enhance mitochondrial biogenesis and increase
healthy life span in middle-aged mice (D’Antona et al.,
2010). However, most of the pathological conditions are
characterized by a combination of anabolic and catabolic sig-
nals that can variably activate even opposite molecular paths.
In the next session, we will highlight studies showing the
most promising therapeutic effects of dietary BCAA
supplementation.

Muscle sarcopenia
Dietary BCAAem supplementation was found to preserve
muscle fibre size, improve physical endurance and motor
coordination in middle-aged mice (D’Antona et al., 2010).
Accordingly, BCAAs have been shown to improve sarcopenia,
that is the age-associated loss of muscle mass and function
(Pansarasa et al., 2008), an effect possibly due to the recovery
of the altered Akt/mTOR signalling in skeletal muscles of aged
rats (Flati et al., 2010). BCAAem-mediated improvement of
muscle functional capacity was further enhanced by exercise
training (D’Antona et al., 2010). Similarly, other groups have
reported that BCAAs decrease protein breakdown and protect
against dexamethasone-induced soleus muscle atrophy in
rats (Yamamoto et al., 2010). BCAAem has recently been re-
ported to protect mice from rosuvastatin-induced myopathy
without impairing the ability of this drug to lower plasma
cholesterol levels. These positive effects seem to be due to
multiple mechanisms, including rescue of de-novo protein
synthesis and reduction of protein breakdown, improvement
of mitochondrial dysfunction and strengthening of the anti-
ROS defence mechanisms of statin, with an effective preven-
tion of oxidative stress in muscle (D’Antona et al., 2016).
These findings may be important considering the high num-
ber of statin prescriptions over the world, also because they
suggest that the modulation of different molecular and cellu-
lar processes, at the same time, can successfully affect degen-
erative myopathies.

Chronic renal failure
Plasma concentrations of BCAAs decrease during untreated
chronic renal failure (CRF), as well as during dialysis (Cano
et al., 2006). Metabolic acidosis is one of the major alterations
of CRF contributing to impaired BCAA production and me-
tabolism, eventually leading to a progressive depletion in
musclemass (Tizianello et al., 1983; Hara et al., 1987; Kooman
et al., 1997). In muscle, metabolic acidosis induces protein
breakdown via activation of both a cytosolic ATP-ubiquitin-
dependent proteolytic pathway and BCKA dehydrogenase,
responsible for the irreversible breakdown of BCAAs.
Metabolic acidosis increases protein catabolism, BCAA break-
down and glutamine release in muscle and stimulates amino
acid and glutamine metabolism towards ammonium
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excretion and bicarbonate generation in the kidney
(Garibotto et al., 1994). Furthermore, the muscle BCAA up-
take represents only 30% of total amino acid extraction in
CRF, compared with 46% in control subjects (Garibotto
et al., 1995). In dialysis patients, it has been reported that
the normalization of plasma BCAAs by BCAA oral supple-
mentation was associated with an improvement in appetite
and nutritional status (Cano et al., 2006). Correction of the
plasma amino acid profile during CRF, through EAA adminis-
tration, has been found to improve protein status, avoid
uraemic toxicity and delay the progression of renal disease
(Cano et al., 2006). In patients with severe CRF, BCAA
supplements are always associated with low-protein diets.
This nutritional intervention has been shown to improve
insulin sensitivity and hyperparathyroidism and to reduce
proteinuria in these patients (Jones et al., 1983; Mitch et al.,
1984; Cano et al., 2006).

Liver cirrhosis
BCAAs largely escape the first-pass hepatic metabolism and
appear directly in the systemic circulation. In liver cirrhosis,
there is a low ratio of plasma BCAAs to aromatic amino acids.
Large-scale, multicentre, randomized, double-blinded, con-
trolled trials have been performed on BCAA supplementation
with the aim of normalizing amino acid profiles and nutri-
tional status in patients with liver diseases (Muto et al.,
2006). These studies demonstrated that the BCAA supple-
mentation improves not only the nutritional status but also
the prognosis and the quality of life in cirrhotic patients
(Steigmann et al., 1984; Kawaguchi et al., 2011). Moreover,
the favourable effects of BCAAs include an increase in
albumin synthesis and an improvement in insulin resistance
(Kawaguchi et al., 2008).

Anti-ageing effects
Dietary supplementation of BCAAem at the beginning of rat
senescence induced eNOS and vascular endothelial growth
factor in the kidney, with increased vascularization and
reduced kidney fibrosis (Corsetti et al., 2014). Topical applica-
tion of BCAAs and other EAAs in aged rats improved vascular-
ization, accompanied by an increase in collagen deposition
and fibroblast proliferation, which also seem also to be
involved in cutaneous wound healing (Corsetti et al., 2010).

Branched-chain amino acid
concentration in dysmetabolic
conditions
The recent large-scale analysis of the use of metabolites (i.e.
metabolomics) in several conditions has allowed us to relate
the plasma BCAA concentrations to disease states and pro-
gression. Diseases characterized by a prominent catabolic
state showed reduced plasma BCAA levels (De Bandt and
Cynober, 2006; Cole et al., 2010). In different conditions,
however, metabolic deficits and altered hormonal and
peripheral nervous system signals can induce changes in
both BCAA absorption/distribution and catabolism (Batch
et al., 2014).

Cardiovascular diseases
Altered body metabolism is a well-known risk factor for
CVDs, and it greatly affects cardiovascular-related mortality
(Long and Fox, 2016). In addition to alterations in lipid and
glucose metabolism, amino acid metabolism has recently
been considered as a potential factor involved in the onset
and progression of heart diseases (Huang et al., 2011). BCAAs
are mostly metabolized in non-hepatic tissue, and the cardiac
muscle represents an important site of BCAA catabolism
(Shimomura et al., 2006). In the failing heart, BCAA utiliza-
tion and catabolism are modified, and BCKAs accumulate in
cardiac tissue (Sun et al., 2016). In a high cardiovascular risk
population, higher concentrations of baseline BCAAs have
been associated with increased risk of cardiovascular diseases
(Huang et al., 2011; Yang et al., 2014). Mechanistically, it has
been proposed that BCAAs, and in particular L-leucine, could
modulate the L-arginine-dependent NO production in endo-
thelial cells, partially through an interaction with gluta-
mine:fructose-6-phosphate aminotransferase (Yang et al.,
2015).

After ischaemic stroke, plasma BCAA concentrations sig-
nificantly decrease both in human and in mouse models
(Kimberly et al., 2013). Low plasma BCAA levels have been re-
lated to the severity of acute ischaemic stroke and worse out-
comes after stroke (Kimberly et al., 2013). Further
investigations are need to fully clarify the relationship be-
tween BCAA plasma and tissue levels and the overall effect
of BCAAs in specific CVDs.

Obesity and type 2 diabetes mellitus (T2DM)
Elevated circulating BCAA levels have been found to be pre-
dictive of TDM2 (Newgard et al., 2009; Yang et al., 2015; Lee
et al., 2016; Yoon, 2016). So far, whether increased BCAA
levels can cause insulin resistance and obesity or if they are
only markers or consequences of loss of insulin action is un-
clear (Lynch and Adams, 2014; Giesbertz and Daniel, 2016).
This doubt results from the fact that, in T2DM and obesity, a
complex of several hormonal and metabolic adjustments in-
fluence most of the body metabolic processes (Cornier et al.,
2008). In these conditions, an exaggerated activation of the
sympathetic nervous system can indeed co-exist with inflam-
mation (a state named metaflammation) (Hotamisligil,
2006), reduced secretion of gut incretines (GLP-1) (Cantini
et al., 2016), inadequate suppression of counter-regulatory
hormones (i.e. glucagon, cortisol and growth hormone), dys-
function of adipose hormones (Fasshauer and Bluher, 2015),
such as adiponectin, leptin, resistin and visfatin, or sex hor-
mones, like oestrogens (Gupte et al., 2015) and testosterone
(Rao et al., 2013), thyroid hormones (Iwen et al., 2013),
dyslipidaemia (i.e. high blood triglycerides and low HDL-
cholesterol) and hyperuricaemia (Newgard, 2012).

Obesity, insulin resistance and T2DM have been associ-
ated with impaired BCAA catabolism that leads to the accu-
mulation of these amino acids. The altered BCAA
catabolism may be the result of different and opposing sig-
nals. Adiponectin, an adipokine predominantly synthesized
in and secreted from adipose tissue (Yamauchi et al., 2002),
has been shown to activate the BCKDC through PP2Cm. In
obese and T2DM animal models, low circulating levels of
adiponectin impair the BCAA catabolism through a down-
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regulation of PP2Cm expression. Interestingly, this effect was
mediated by the AMPK signaling pathway (Lian et al., 2015).
Resistin and visfatin are adipokines highly expressed in vis-
ceral fat, and they induce insulin resistance. When resistin
is overexpressed, BCAA uptake and protein synthesis are in-
creased, while the insulin signal is impaired (Kang et al.,
2011). Furthermore, BCAAs significantly inhibit visfatin-
induced signals (Ninomiya et al., 2011). Hyperinsulinaemic-
euglicemic clamp studies in diabetic patients showed that
high-blood levels of insulin can normalize the plasma BCAA
concentration. Total pancreatectomized patients showed a
better BCAA uptake, suggesting that a basal level of glucagon
is important for regulating the plasma concentrations of
BCAAs (Trevisan et al., 1989). Moreover, reduced levels of tes-
tosterone impaired leucine-dependent stimulation of protein
synthesis (Jiao et al., 2009).

In contrast, other studies have suggested a causal role
of the circulating high levels of BCAAs in impairing insulin
signalling (Adeva et al., 2012; Yoon, 2016). BCAAs in fact
activate mTOR/p70S6 kinase, which phosphorylates the
insulin receptor substrate-1 (IRS-1), thereby inhibiting
phosphatidylinositol-3-kinase and insulin signalling
(Tremblay and Marette, 2001). Phosphorylation can target
IRS-1 for proteolysis, via a proteasomal process (Tremblay
et al., 2005). However, numerous observations indicate that
the BCAA-associated mTORC1 activation is not necessary or
sufficient to trigger insulin resistance (Leibowitz et al.,
2008). Also a BCAA metabolite (i.e. 3-HIB) produced in dia-
betic muscles has been shown to increase endothelial fatty
acid transportation to the muscle contributing to the insulin
resistance becoming worse (Jang et al., 2016).

In an obese mouse model, BCAT expression and activity
was reduced in liver and adipose tissue, but not in muscle,

resulting in increased BCAA levels in blood (She et al.,
2007a). However, deletion of BCAT in BCAT2�/� mice, in
which circulating BCAA levels were very high, resulted in im-
proved glycaemic control, insulin sensitivity, adiposity and
lipid profiles, despite increased mTORC1 signalling (She
et al., 2007b). The long-chain fatty acids and their metabo-
lites, present in blood of insulin-resistant and T2DM subjects,
can inhibit BCKDC activity, either by affecting redox state or
acetyl-CoA synthesis (Ruskovska and Bernlohr, 2013). Al-
though high levels of BCAAs and inflammatory cytokines
have been observed in obese-insulin resistant patients, a high
dose of TNF-α and/or IL-1β or IL-1α (50 μg kg�1) has been
shown to increase muscle BCKDC activity by two to threefold
(Nawabi et al., 1990).

Despite the fact that BCAA concentrations are elevated in
obese and TDM2 subjects, some studies have investigated the
effects of BCAA supplementation in a selected subset of obese
patients, and have shown beneficial effects on body weight
and body fat accumulation. BCAA supplementation in a
long-term randomized study of elderly subjects with T2DM
showed improvements in metabolic control [i.e. reduced
glycated haemoglobin (HBA1c)] and insulin sensitivity
(Solerte et al., 2008). Noteworthy, BCAAs effectively reduce
insulin resistance in patients with chronic viral liver disease
(Kawaguchi et al., 2008).

Conclusion
BCAAs have been shown to play an important role in the
regulation of metabolism and energy balance by directly af-
fecting peripheral tissues, such as WAT, liver and muscle.
The effect of BCAAs drastically changes when they act in

Figure 2
BCAAs differently modulate catabolic and anabolic states. The boxed area represents the catabolic (red, left) or anabolic (yellow, right) states of
the organisms. In catabolic (sepsis, trauma and ageing) and anabolic (growth) conditions, BCAAs have been shown to restore the energy balance
and to improve the clinical outcomes (arrows). In contrast, in metabolic disorders, different amounts of anabolic and catabolic signals coexist.
Here, we present insulin resistance, obesity and T2DM, which are primarily anabolic conditions, in which several catabolic signals are co-expressed
with anabolic ones (e.g. exaggerated sympathetic nervous system activity, inadequate suppression of counter-regulatory hormones, such as glu-
cagon, cortisol and growth hormone). In these pathological conditions, the effects of BCAA supplementation seem (arrow) to exert opposing ef-
fects depending on the prevalence of the catabolic or anabolic signals. Multiple interventions capable of balancing the aberrant metabolic signals
(dashed line) may be required to potentiate the healthy effects of BCAAs (dashed arrow).
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catabolic or anabolic conditions. In catabolic states, BCAAs
can behave as energy substrate, which can be directly oxi-
dized in the muscle or converted to gluconegenic-chetogenic
substrates. In contrast, in anabolic conditions, BCAAs
stimulate protein synthesis and cell growth (Figure 2). In ex-
clusively catabolic disorders, such as muscle sarcopenia, burn
and trauma, BCAA supplementation improves muscle func-
tion and clinical outcomes (Figure 2). However, in metabolic
disorders, in which different amounts of anabolic and cata-
bolic signals coexist, the effects of BCAA supplementation
are difficult to predict. This might be the case in obesity and
insulin resistance, where BCAA supplementation seems to ex-
ert opposing effects depending on the prevalence of the cata-
bolic or anabolic signals (Figure 2). Thus, a future challenge in
this field will be to approach systemically the complex
network of molecules and metabolites, beyond the environ-
mental signals (i.e. foods, nutrient composition, calorie
restriction, exercise, gut microbiome, etc.), that regulates
BCAA metabolism and is regulated by BCAAs themselves.
This will be possible only taking into account both the
complexity and the peculiarity of single, specific diseases,
which depend on the variable contributions of the nervous
system – both sympathetic and parasympathetic – in
addition to the immune and the endocrine systems, acting
in the presence of particular nutritional states.

To obtain significant data, it is vital to evaluate carefully
the experimental conditions that are demonstrated to largely
influence the outcomes of treatments with BCAAs. Also,
given the potential discrepancy found in the treatments’ re-
sults, it is advisable to establish the effective BCAA dose and
toxicity in every single clinical setting. Multiple interven-
tions capable of balancing any aberrant metabolic signals
may be required to potentiate the healthy effects of BCAAs.
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